Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрофильное замещение у 53-углерода

    Реакция азосочетания — взаимодействие солей диазония с ароматическими соединениями (аминами и фенолами), которое приводит к образованию азосоединений Аг—Аг по механизму электрофильного замещения. Ион диазония, являясь электрофильным агентом, атакует атом углерода с наибольшей электронной плотностью  [c.191]

    Радикальный и ионный механизмы реакции галогенирования. Нуклеофильное замещение при насыщенном атоме углерода. Механизмы 5д,1 и 5д,2. Зависимость механизма реакции от строения исходных веществ и условий реакции. Электрофильное замещение в ароматическом ядре (5 ). Галогенирование ароматических соединений. Механизм реакции, я- и о-Комплексы. [c.76]


    В пиридине более электроотрицательный атом азота оттягивает к себе электронную плотность, поэтому у атомов углерода в положениях 2, 4 и 6 наблюдается дефицит электронов и, следовательно, реакции электрофильного замещения предпочтительнее будут протекать по положению 3. Необходимо, однако, подчеркнуть, что электрофильное замещение (нитрование, галогенирование) у пиридина по сравнению с бензолом протекает значительно труднее  [c.417]

    Химические свойства. Вследствие того, что электроотрицательности серы и углерода равны, тиофен по химическим свойствам ближе к бензолу, чем другие пятичленные гетероциклические соединения. Однако из-за несколько меньшей энергии сопряжения и большей насыщенности диеновой части молекулы электронной плотностью способность тиофена к реакциям электрофильного замещения несколько выше, чем у бензола. [c.517]

    Мортон относит реакцию замещения водорода металлом к реакциям электрофильного замещения, основываясь на убеждении (иризнанном в настоящее время неправильным), что атакующим реагентом является катион щелочного металла, а карбанион играет только второстепенную роль акцептора протонов [229]. С другой стороны, основываясь на расположении нары электронов углерод-водородной связи, которая разрывается, и связи углерод — металл (ионной), которая образуется [159], реакция замещения водорода металлом мон<ет быть определена как электрофильное замещение. По той же причине гидролиз тирет-бутилхлорида определяют как реакцию нуклеофильного замещения [159]. [c.473]

    Поскольку карбоновые кислоты, за исключением угольной, находятся в высшей степени окисления, многие методы их получения основаны на окислении (разд. Б). Однако иногда следует предпочесть гидролиз производных кислот, находящихся в той же степени окисления (разд. А). В дополнение к методам получения кислот, основанным на окислении, в разд. В обсуждается восстановление двуокиси углерода под заголовком Карбоксилирование металлоорганических соединений . Хотя все методы получения карбоновых кислот можно было бы разделись на эти три типа, полезно отдельно рассмотреть методы, приводящие к глубоким изменениям. Поэтому добавлены разделы,, описывающие методы конденсации (разд. Г), щелочного расщепления (разд. Д), электрофильного замещения и присоединения (разд. Е) и перегруппировок (разд. Ж)- [c.220]

    Пиридин — типичное ароматическое соединение, имеющее, как н бензол, замкнутую электронную систему из секстета я-электронов. Поэтому пиридин вступает в реакции электрофильного замещения (5е), которые, однако, протекают значительно труднее, чему бензола. Это связано с неравномерным распределением я-электронной плотности в кольце из-за оттягивающего действия атома азота (азот более электроотрицателен, чем углерод), снижающего электронную плотность в а (а )- и -положениях и повышающего в р-по-ложении  [c.368]


    В 1955 г. Крам [45] исследовал стереохимию электрофильного замещения углерода на водород при насыщенном углеродном атоме. [c.109]

    Электрофильное замещение углерода на водород. Крам [73—80] исследовал стереохимию электрофильного замещения углерода на водород при насыщенном атоме углерода. [c.178]

    При исследовании механизма реакции электрофильного замещения применялся изотопный метод [159]. Оказалось, что соединения, меченные дейтерием и тритием, замещаются с такой же скоростью, как и водородсодержащие аналоги, т. е. заметного изотопного кинетического эффекта для большинства реакций не наблюдается. Учитывая, что энергия разрыва связей углерод — дейтерий и углерод — третий выше, чем энергия связи С—Н, можно заключить, что последняя стадия реакций электрофильного замещения — отрыв протона — не должна быть лимитирующей. Поскольку образование л-комплексов — быстрый процесс, то в качестве лимитирующей стадии остается изомеризация я-комплекса в а-комплекс. [c.238]

    Одной из причин пассивности пиридина в реакциях электрофильного замещения и ориентации заместителя в -положение является то, что из-за большей электроотрицательности азота по сравнению с углеродом и высокой поляризуемости п-связей электронная плотность в пиридине распределена неравномерно  [c.544]

    Для алйиларенов характерно электрофильное замещение в ядро и свободно-радикальное в боковую цепь. Однако присутствие алкила облегчает реакции в кольцо, а наличие ароматического ядра заметно облегчает реакции у атома углерода, соседнего с [c.19]

    Особенностью соединений (г) является сопряжение шести р-электронов атомов углерода, которое приводит к значительному выигрышу энергии (энергия резонанса). Этот факт обусловливает сравнительно низкую реакционную способность соединений ароматического ряда и их склонность к реакциям электрофильного замещения (а не присоединения). Своеобразие этих соединений заставляет рассматривать их как отдельный раздел органической химии. [c.43]

    Подвижный атом водорода метиленовой группы можно заменить на галоген или щелочной металл (электрофильное замещение у метиленового атома углерода)  [c.101]

    На примере хлорвинильных металлоорганических соединений Реутовым и Белецкой была изучена реакция электрофильного замещения в ряду непредельных соединений. При этом удалось осуществить мономолекулярное электрофильное замещение 5 1 атома металла у олефинового атома углерода на иод в высоко ионизирующем растворителе — диметилсульфоксиде. Конфигурация исходных и конечных продуктов в ходе замещения не изменялась. Это позволило сделать вывод, что стереохимия реакций у олефинового атома углерода имеет иной характер, чем замещение 5 1 у насыщенного атома углерода свободная пара электронов у ненасыщенного атома углерода способна закреплять конфигурацию  [c.233]

    В любой ионной реакции, приводящей к образованию новой углерод-углеродной связи [979], один атом углерода выступает как нуклеофил, а другой — как электрофил. Поэтому отнесение любой реакции к нуклеофильному или электрофильному типу является вопросом традиции и часто основывается на аналогиях. И хотя реакции с 11-13 по 11-30 и с 12-14 по 12-18 не обсуждаются в этой главе, они представляют собой нуклеофильное замещение по отношению к одному из реагентов, но традиционно они классифицируются по другому реагенту. Аналогично все реакции этого раздела (от 10-87 до 10-116) можно назвать электрофильным замещением (ароматическим или алифатическим), если реагент рассматривать как субстрат. [c.186]

    В результате реакций, обсуждающихся в этом разделе, образуется новая углерод-углеродная связь. По отношению к ароматическому субстрату они представляют собой электрофильное замещение, так как кольцо атакуется положительной частицей. По традиции их относят к этому типу реакций. Однако по отношению к электрофилу большинство из этих реакций являются нуклеофильным замещением, и все, что говорилось в гл. 10 о реакциях нуклеофильного замещения, справедливо и в данных случаях. Некоторые из них могут не быть реакциями замещения по отношению к реагенту так, например, при использовании в качестве реагента олефинов — это присоединение к двойной углерод-углеродной связи (реакция 11-13) или присоединение по связи С = 0 (реакция 11-24). [c.348]

    Как отмечалось в гл. 11, для реакций электрофильного замещения наиболее характерны такие уходящие группы, которые могут существовать в состоянии с незаполненной валентной оболочкой, для завершения которой необходима электронная пара. В случае ароматических систем самой распространенной уходящей группой является протон. В алифатических системах протон также может служить уходящей группой, но его подвижность зависит от кислотности. В насыщенных алканах подвижность протона очень мала, но электрофильное замещение зачастую легко происходит в тех положениях, где протон более кислый, например, в а-положении к карбонильной группе или при ацетиленовом атоме углерода (КС = СН). Особенно склонны к реакциям электрофильного замещения металлоорганические соединения, так как при этом образуются положительно заряженные ионы металлов [1]. Важным типом электрофильного замещения является анионное расщепление, включающее разрыв связей С—С, при котором уходящей группой является углерод (реакции 12-39—12-45). В конце данной главы рассматривается много примеров электрофильного замещения у атома азота. [c.407]


    Особое место занимают ароматические углеводороды, родоначальником которых является бензол. Характерной отличительной особенностью бензола является его плоская циклическая структура с единой я-электронной системой. Все атомы углерода в бензоле равноценны, что объясняется делокализацией я-электронов. Алканы преимущественно вступают в. реакции радикального замещения (5 ), а алкены и алкины— в реакции присоединения. Взаимодействие алкенвв и алкинов с водой, галогеноводородами и другими полярными молекулами происходит в соответствии с правилом Мар-ковникова. Данное правило отражает суть взаимного влияния атомов в молекулах. Диеновые углеводороды взаимодействуют с га-логедами и галогеноводородами с образованием преимущественно продуктов присоединения по положениям 1, 4. Это объясняется строением промежуточно образующегося карбкатиона. Особенностью арол атических углеводородов является их свойство легко вступать в реакции электрофильного замещения. Строение образующегося продукта реакции определяется правилами ориентации и природой атакующего реагента. [c.356]

    Рассматриваемые в настоящей главе реакции классифицированы по уходящей группе водород, металлы, галогены, углерод. Электрофильное замещение при атоме азота рассматривается в последнюю очередь. Сюда следует отнести некоторые реакции, представляющие собой электрофильное замещение по отношению к атакующей молекуле и описанные в других главах реакции 10-87—10-116, 10-122, т. 3, реакции 13-11—13-16, 15-15— 15-19 и 16-30—16-55. [c.421]

    В этих реакциях (с 12-39 по 12-47) расщепляется связь углерод— углерод. Субстратом считается та часть молекулы, которая сохраняет электронную пару, поэтому такие реакции рассматриваются как электрофильное замещение. Во всех случаях, за исключением реакции 12-41, входящей группой является водород. Реакции, приведенные в подразделах А и Б, иногда называют анионным расщеплением, хотя они и не всегда происходят по механизму, включающему свободные карбанионы (5е1). В тех случаях, когда карбанион образуется, повышение его устойчивости облегчает реакцию. [c.468]

    В реакциях типа а) вытеснение происходит, как правило, у атома углерода вытесняться может как атом водорода или какой-нибудь другой атом, так и группа атомов. В реакциях электрофильного замещения чаще всего замещается водород примером такой реакции может служить классическое ароматическое замещение (см. стр. 138)  [c.49]

    Реакции электрофильного замещения у атомов углерода [c.24]

    Электрофильное замещение пиридинов по атомам углерода идет с большим трудом. Они нитруются и сульфируются только в весьма жестких условиях и, как правило, с очень низкими выходами. В реакции Фриделя — Крафтса пиридины не вступают, а менее активные электрофильные реагенты, не способные реагировать с бензолом, тем более не могут заместить водород у атомов углерода в пиридине. [c.43]

    При этом углерод из состояния переходит в состояние sp -гибpи-дизации. Это третья стадия электрофильного замещения. Именно в быстром отшеплении протона и заключается отличие процесса электрофильного замешения в ароматическом ряду от электрофильного присоединения к олефинам. Как увидим дальше, устойчивость а-комплекса зависит от природы находящегося п ядре заместителя. [c.283]

    Ш. Укажите механизм замещения при синтезе гексахлорофана из 2,4,5-тряхлорфенола (по отношению к атомам углерода цикла). а. Радикальное замещение б. Нуклеофильное замещение в. Электрофильное замещение [c.90]

    Большинство реакций замещения у алифатического атома углерода представляют собой реакции нуклеофильного замещения. Для ароматических систем ситуация обратная, поскольку вследствие высокой электронной плотности ароматического кольца ОНО притягивает положительные, а не отрицательные частицы. В реакциях электрофильного замещения атакующей частицей является положительный ион или положительная часть диполя или индуцированного диполя. Уходящая группа (электрофуг) обязательно должна отщепляться без своей электронной пары. В реакциях нуклеофильного замещения уходящими группами в основном выступают те, которые более всего склонны нести электронную пару Вг , Н2О, ОТз и т. д., т. е. наиболее слабые основания. В реакциях электрофильного замещения важнейшие уходящие группы — это те, которые наиболее устойчивы без пары электронов, необходимой для заполнения внешней оболочки, т. е. самые слабые кислоты Льиса. Наиболее часто в реакциях ароматического электрофильного замещения уходящей группой служит протон. [c.304]

    В случае ртутьорганических субстратов обращения конфигурации не наблюдалось. Возможно, имеются и другие случаи атаки с тыла [13], которые не удалось идентифицировать из-за трудностей получения соединений с конфигурационно устойчивой связью углерод — металл. Соединения, хиральность которых обусловлена асимметрическим атомом углерода, входящего в связь углерод — металл, обычно трудно разделить на оптические антиподы, а будучи разделенными, такие соединения зачастую легко рацемизуются. Чаще всего удается разделить ртутьорганические соединения [14], поэтому больщая часть сте-реохимических исследований была выполнена именно на этих субстратах. Известно лишь несколько оптически активных реактивов Гриньяра [15], в которых единственным асимметрическим центром был бы атом углерода, связанный с магнием. Поэтому стереохимия электрофильного замещения при связи С—Жg установлена далеко не во всех случаях. Для одной из таких реакций, а именно для взаимодействия экэо- и эн(5о-изомеров 2-норборнильного реактива Гриньяра с НдВг2, приводящего к 2-нор-борнилмеркурбромиду, показано, что она происходит с сохранением конфигурации [16]. Вполне вероятно, что обращение конфигурации имеет место только в тех случаях, когда стерические затруднения препятствуют фронтальной атаке и когда электрр-фил не несет группу Ъ (см. выше). [c.411]

    Ароматические углеводороды — это планарные (плоские) циклические соединения, у которых образуется единая сопряженная система электронов. Типичным представителем ароматических углеводородов является бензол. Как было показано ранее, негибридизированные р-электроны атомов углерода в бензоле образуют систему сопряженных нелокализованных л-связей. Все связи между атомами углерода в бензоле равноценны, по энергии и длине они занимают промежуточное положение между ординарными и двойными связями. Поэтому бензол и его гомологи (С Н2 -б) достаточно устойчивы, реакции их окисления и присоединения протекают с трудом. Для ароматических углеводородов характерна реакция электрофильного замещения водорода на другие атомы или группы атомов, например  [c.304]

    Обширные работы по изучению реакций электрофильного замещения у насыщенного атома углерода выполнены О. А. Реутовым и сотрудниками на примере металлорганических соединений [86]. В реакциях, протекающих по механизму 5я2, наблюдается сохранение конфигурации. Наиболее наглядно это было показано на примере реакции изотопного обмена с участием оптически активного 2-метилгексил-5-меркурбро-мида. [c.276]

    Подтверждение сохранения конфигурации в реакциях замещения 5е2 у насыщенного атома углерода было дано также в работах Уинстейна и Ингольда. Вопрос о сохранении оптической активности в реакциях электрофильного замещения, протекающих по механизму 5 1, связан с проблемой устойчивости конфигурации карбанионов, которые должны быть промежуточными частицами в таких реакциях. Обычный результат 5Е1-реакций — рацемизация, поскольку карб-анионы становятся плоскими и теряют асимметрию. Однако было показано, что если обменную реакцию между оптически активным 2-иодоктаном и 2-бутиллитием с последующей карбонизацией вести при —70°С, то можно выделить 2-ме тилоктановую кислоту с сохранением конфигурации на 80% з [c.276]

    I. 2 — менее электроотрицательная группа, чем соседний атом углерода, и не имеет свободной пары электронов на атоме. связанном с бензольным кольцом. В этом случае заместитель 2 может стабилизировать структуру XVIII или XXIV только за счет индуктивного перемещения электронов к соседнему атому углерода (XXV). В результате этого взаимодействия резонансный карбокатион, возникающий при орто- и пара-замещении, образуется легче, чем соответствующий интермедиат при л ега-замещении, где такое взаимодействие исключено. Таким образом, рассматриваемый тип заместителей приводит при электрофильном замещении преимущественно к образованию орто- и лара-продуктов. [c.56]

    Пиридин XXIV подобно бензолу имеет шесть я-электронов (один из которых поставляется азотом), расположенных на делокализованных я-орбиталях. Однако в отличие от бензола в пиридине я-орбитали деформированы, поскольку электроны смещены в сторону атома азота из-за его более высокой электроотрицательности по сравнению с углеродом. Это проявляется, в частности, в наличии у пиридина дипольного момента, вследствие чего пиридиновое кольцо, как и следовало ожидать, дезактивировано в отношении электрофильного замещения в этом отношении пиридин можно сравнить с нитробензолом XXV, [c.166]

    Общий механизм электрофильного замещения предполагает, что можно заместить не только водород, если электрофил атакует уже замешенный атом углерода. Замещение у атома, уже имеющего заместитель, названо /гсо-замещением и наблюдалось а ряде случаев. Легкость ухода заместителя зависит от его способностн принять чоложН тельный заряд. Этот фактор определяет, какая частица удаляется из (Т-комплекса лри ароматизации уже имевшийся в кольце заместитель нли вновь вступающий э.чектрофил  [c.368]

    Нетрудно применить подход Дьюара на основе первого порядка теории возмущений для определения энергии локализации, Промежуточный продукт Уэланда в электрофильном замещении можно рассматривать как отдельный атом углерода К (с,3 =1) и катион пентациеиила 5. Поэтому затрата энергии при локализации двух я-электронов на одном атоме дается формулой [c.320]

    В пользу этой схемы говорит и тот факт, что если в молекуле имеются бром и хлор при соседних углеродах, то бром находится у менее замещенного углерода, а хлор — у более замещенного, что соответствует механизму с участием Вг и С1 . В пользу электрофильной атаки, как ключевой стадии биосинтеза галогенпроизвод-ных природных соединений, свидетельствует и обилие соединений [c.345]

    Оксид углерода, цианистый водород и нитрилы также реагируют с ароматическими соединениями в присутствии сильных кислот или дру гих катализаторов Фриделя — Краф са. Эти реакции широко исполь-зуютсй в синтезах, поскольку в результате образуются формил- и ацил-за мещенные ароматические соединения. Этл электроноакцепторные группы препятствуют дальмейшему электрофильному замещению. Подробные исследования механизма не проводились ниже приведены при мерные механизмы дтих реакций  [c.238]


Смотреть страницы где упоминается термин Электрофильное замещение у 53-углерода: [c.240]    [c.152]    [c.354]    [c.46]    [c.409]    [c.92]    [c.424]    [c.133]    [c.163]    [c.991]    [c.626]    [c.161]   
Смотреть главы в:

Введение в теоретическую органическую химию -> Электрофильное замещение у 53-углерода




ПОИСК





Смотрите так же термины и статьи:

Замещение электрофильное

Углерода электрофильное

Электрофильность



© 2025 chem21.info Реклама на сайте