Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алканы Углеводороды насыщенные

    В случае же алкенов кратная связь, хотя в известных пределах и передвигающаяся по углеродной цепи, является все же в значительной степени фиксированной. Особенно это положение справедливо для непредельных углеводородов, уже имеющих боковую метильную группу. Этим, по-видимо-му, и объясняется большая легкость образования диметилзамещенных алканов у насыщенных углеводородов, так как возникновение реакционного центра у молекулы разветвленного алкана имеет практически те же возможности, что и возникновение реакционного центр.а у нормального алкана. Понятно, что в случае изомеризации алкенов реакционный центр ограничивается небольшим числом углеродных атомов, так или иначе примыкающих к кратной связи. [c.174]


    Мы уже знакомы с насыщенными и ненасыщенными углеводородами. Насыщенные углеводороды называются алканами, ненасыщенные с двойной связью— алкенами, а с тройной — алкинами. Нам известно, что эти углеводороды, если расположить их в порядке увеличения числа атомов углерода, образуют гомологические ряды. [c.156]

    Было проведено другое сравнение (микронефтей. — Прим. ред.) глинистых пород и нефтей из одних и тех же областей. В этом случае также не делалось попытки связать нефти с определенными глинистыми породами, за исключением того, что рассматривались только те глинистые породы, для которых значения НЧ/Ч близки к значениям этого показателя для к-алканов в нефтях. Образцы, возраст которых колебался от ордовика до мела, были отобраны через большие вертикальные интервалы в девяти геологических провинциях в штатах Кентукки, Виргиния, Оклахома, Техас и Монтана. Исследовались также нефти из тех же самых районов. Результаты анализов углеводородов, содержавшихся в этих образцах, приведены на рис. 12, показывающем частотное распределение процентного содержания к-алканов во фракции насыщенных тяжелых углеводородов из нефтей (рис. 12, б) и нефтематеринских глинистых пород (рис. 12, а). Среднее содержание к-алканов в 76 образцах глинистых пород — 21,6%, а для 215 нефтей 37,6%. Эти средние значения показывают, что содержание к-алканов в насыщенных тяжелых углеводородах нефтей гораздо больше (на 74%), чем в соответствующей фракции углеводородов из глинистой породы. Это свидетельствует в пользу миграции углеводородов из глинистых пород со значениями НЧ/Ч, близкими к таковым для нефтей. И в данном случае статистическая проверка полученных результатов с помощью нулевой гипотезы почти исключает возможность влияния случайности при отборе проб. [c.187]

    Более высокое процентное содержание н-алканов в насыщенных углеводородах нефтей по сравнению с содержанием н-алканов в соответствующих фракциях из (микронефти. — Прим. ред.) глин объясняется миграцией этих алканов из нефтематеринских пород. При другом объяснении этого явления пришлось бы допустить, что после эмиграции углеводородов (микро. — Прим. ред.) нефти в осадках/по- [c.188]

    Наиболее трудно окисление протекает в ароматической ядре и в первичных связях С - Н н-алканов. В насыщенных углеводородах присоединение кислорода в [c.75]

    Алканы (парафиновые углеводороды) —насыщенные углеводороды алифатического строения. Общая формула алканов С Н2п+2, или СНз-(СН2) -2-СНз. [c.28]


    В последующем при исследовании превращений изомерных диметилбутанов над Pt-пленками концепция одновременного протекания изомеризации алканов в соответствии с циклическим механизмом и механизмом сдвига связей получила свое дальнейшее развитие [86]. Показано, что на Pt-пленках, так же как на Pt/A 2О3, скелетная перегруппировка насыщенных углеводородов [c.203]

    Обратимся снова к молекуле метана. Метан - это первый представитель ряда углеводородов, известных под названием алканы,. которые мы сейчас рассматриваем. В алканах каждый углеродный атом образует ковалентную связь с четырьмя другими атомами. Алканы еще называют насыщенными углеводородами, потому что каждый атом углерода связан с максимальным числом других атомов (четыре). [c.188]

    Реакция дегидрирования позволяет получать из насыщенных углеводородов, или алканов, ненасыщенные углеводороды, которые иначе назы- [c.287]

    Определяемое методом масс-спектрометрии [10] распределение насыщенных молекул в соответствии с числом циклов в молекуле (0—5 циклов) дает достаточно подробную характеристику насыщенных углеводородов в исследуемых нефтях. При желании можно провести соответствующий масс-спектрометрический анализ и ароматических углеводородов (см. главу 4). Кроме того, масс-спектро-метрия позволяет определять общее содержание алканов отдельно нормального и отдельно разветвленного строения. Близкая схема анализа была использована также в работах Французского института нефти, посвященных характеристике большого числа нефтей [5]. [c.11]

    Данные по групповому составу нефтей показывают, что основ-ную часть углеводородов, выкипающих в интервале 200—430 С. составляют насыщенные углеводороды (алканы - - цикланы), на долю которых приходится 60—80% всей фракции. Соотношение же между концентрациями алканов и цикланов весьма различно. Так, например, концентрация алканов изменялась в пределах от 6 до 60%, поэтому следует предположить, что эта величина является определяющим фактором в разнообразии углеводородного состава нефтей. В то же время среднее содержание алканов, цикланов и аренов приблизительно равное, что хорошо согласуется с работами Французского института нефти, в которых, также в среднем (для 517 изученных нефтей), было найдено для фракций с т. кип. >210° С равное соотношение углеводородов этих трех типов [5]. Вместе с тем отдельно взятые нефти различаются большим разнообразием группового состава. В табл. 2 приведены пределы изменения и наиболее часто встречающиеся значения группового состава для нефтей различных химических типов, рассмотренных в табл. 1. [c.17]

    На рис. 11 приведена типичная хроматограмма бензина (насыщенные углеводороды) парафинистой нефти (тип А ). Аналогичный анализ бензинов нафтеновых нефтей более сложен и возможен лишь для фракций, выкипающих не выше 150° С (С5—Сд). На рис. 12 в качестве примера приведена хроматограмма насыщенных углеводородов С5—Сд, выделенных из нефти типа Б . Следует обратить внимание на необычное распределение алканов по типу строения и главным образом на высокие концентрации геминальных и вици-нально замещенных структур. [c.36]

    Справа приведено распределение насыщенных углеводородов по типам структур. Указаны пики нормальных и изопреноидных алканов. Здесь и на рис. 89 п — число атомов углерода в алканах [c.249]

    Эта реконструкция позволяет избежать длительных операций, связанных с выделением и концентрированием полициклических алканов нефтей. На рис. 90 в качестве примера приведены такие реконструкции, выполненные путем хромато-масс-спектрометрии насыщенных углеводородов с т. кип. >400° С двух нефтей Старогрозненского месторождения. Несмотря на совершенно различный химический тип этих нефтей (одна — типа А , вторая — тина Б ), распределение гопанов в них близкое, что указывает на единый источник их образования. [c.254]

    Все приведенные выше углеводороды имеют то общее, что валентности входящих в пх состав углеродных атомов полностью насыщены водородными атомами. Поэтому эти углеводороды и носят название насыщенных, или предельных, а также называются метановыми (по названию первого члена ряда — метана), парафиновыми углеводородами, или алканами. [c.8]

    Номенклатура насыщенных углеводородов. Гомологический ряд алканов, структ ные изомеры. Углеводородные заместители. [c.188]

    Изопарафиновые углеводороды (изоалканы) крекируются легче и глубже, чем н-алканы. Водорода и метана при этом получается больше, чем при крекинге н-алканов, а углеводородов Сз— С4 — меньше. Фракции С4—Се содержат меньше олефинов вследствие того, что насыщение сильно разветвленных молекул непредельных углеводородов проходит легче, чем неразветвленных. [c.49]

    Нефть - сложная смесь алканов (парафиновых или ациклических насыщенных углеводородов), цикланов (нафтенов) и аренов (ароматических углеводородов), различной молекулярной массы, а также кислородных, сернистых и азотистых производных углеводородов [1, 33, 130, 170]. Нефти разных месторождений по углеводородному составу неодинаковы. Для нефти всех месторождений характерно, с одной стороны, огромное разнообразие видов, с другой - наличие преимущественно одинаковых элементов в ее составе и структуре, сходство по некоторым параметрам. Элементарный состав разнообразных видов нефти во всем мире изменяется в пределах 3-4% по каждому элементу [4, 141]. [c.8]


    Парафиновые углеводороды, содержащиеся в нефтяном сырье, превращаются на катализаторах с высокой кислотной активностью по карбоний-ионному механизму преимущественно с разрывом в средней части молекулы с наименьшей энергией связи С—С. Как и при каталитическом крекинге, вначале на металлических центрах катализатора происходит дегидрирование парафинов с образованием алкенов. Затем алкены на кислотных центрах легко превращаются в карбоний-ионы и инициируют цепной карбоний-ионный процесс. Скорость гидрокрекинга при этом также возрастает с увеличением молекулярной массы алканов. Изопарафины с третичными углеродными атомами подвергаются крекингу со значительно большей скоростью, чем нормальные ал-каны. Так как распад карбоний-ионов с отщеплением фрагментов, содержащих менее трех атомов углерода, сильно эндотермичен, при гидрокрекинге почти не образуются метан и этан и высок выход изобутана и изопентанов (больше равновесного). На катализаторах с высокой гидрирующей и умеренной кислотной активностями происходит интенсивное насыщение карбоний-ионов, в результате образуются парафины с большим числом атомов углерода в молекуле, но менее изомеризованные, чем на катализаторах с высокой кислотностью. [c.241]

    Из углеводородов максимальное значение Н С у метана (33%), и это соотношение убывает с увеличением числа атомов углерода в молекуле. На рис. 2.17 нанесены кривые изменения Н С для углеводородов насыщенного (а.пканы, нафтены) и ненасыщенного (арены) рядов. Они показывают, что в одном гомологическом ряду (особенно для алканов) это соотношение существенно меняется только для углеводородов с числом атомов углерода до 10-12, а далее оно меняется незначительно. Больше разница значений Н С для различных фупп углеводородов, и [c.69]

    Алканами называются насыщенные углеводороды, молекулы которых состоят из атомов углерода и водорода, связанных между собой только а-связямй. [c.47]

    Определение содержания изо- и нормальных алканов в насыщенной части вефтяных фракций. Детализированный анализ состава насыщенных углеводородов возможен только в случае достаточно узких по составу и молекулярной массе и хорошо очищенных фракций. В общем же случае в насыщенных фракциях нефти можно дифференцировать алканы нормального и изостроения. В качестве аналитической характеристики для дифференциации таких алканов выбрана суммарная интенсивность пиков ионов С Н2п+1 с га >> 7 (299), отнесенная [c.99]

    Как указывалось выше, для образцов, по результатам исследования которых построены диаграммы на рис. 11, связь нефтей с (микронефтью. — Прим. ред.) из оиределенных глинистых пород точно не установлена. Это можно выявить лишь в том случае, если нефть будет обладать какими-либо специфическими особенностями, унаследованными от ее материнского вещества. Частотные распределения имеют значение только тогда, когда налицо две совокупности, а установленные различия не являются результатом случайного отбора образцов. Наличие двух систем совокупности было проверено статистически путем сравнения двух полиномиальных распределений по выборкам. Это испытанный статистический метод (Mood, 1950). Результаты статистической проверки показали, что вероятность большего содержания к-алканов в насыщенных тяжелых углеводородах нефти, чем в соответствующих фракциях углеводородов из глинистых пород, очень близка к единице (0,9999). Возможность ошибки меньше 0,0001. Широкий вертикальный отбор образцов из разнообразных условий среды, изменчивость условий среды и обусловленная этим изменчивость в составе рассеянных органических веществ обеспечивают возможность широкого применения полученного результата. [c.187]

Рис. 12. Распределение содержания алканов в насыщенных тяжелых углеводородах из (микронефти, —Ярмж. ред.) осадочных пород и из нефтей, %. Рис. 12. <a href="/info/840875">Распределение содержания</a> алканов в насыщенных <a href="/info/146901">тяжелых углеводородах</a> из (микронефти, —Ярмж. ред.) <a href="/info/175389">осадочных пород</a> и из нефтей, %.
    Углеводородная часть остажов изучена достаточно хорошо и в основном представлена алканами, циклоалканами, циклоалкано-алка-нами и аренами с различной степенью цикличности. В составе группы насыщенных углеводородов преобладают циклоалканы и циклоалкано-алканы. Арены состоят из легких (моноциклические, включающие алифатические цепочки различной длины и разветвленности), средних (би- и трициклические в виде конденсированных систем из двух-трех бензольных и циклоалкановых колец), тяжелые (полициклические углеводороды), содержащие большую долю конденсированных систем преимущественно из ареновых колец и по характеру скелета приближающиеся к первичным смолам. [c.15]

    Феррис считает, что при охлаждении хорошо очищенного парафинового дистиллята (см. гл. Х1-3) парафины выпадают в виде пластинчатых гексагональных кристаллов, образующих хорошо фильтруемый осадок. Гексагональные пластины — это форма, получаемая также и при очистке промышленного парафина при перекристаллизации в растворителе, проводимой с целью увеличения содержания насыщенных углеводородов. Однако при некоторых условиях парафин может кристаллизоваться в виде игл, это может значительно помешать исследованию вопроса. Например, большинство синтезов высокомолекулярных насыщенных углеводородов (линейных алканов) приводит к образованию чистых продуктов, кристаллизующихся в виде игл [53]. На образование той пли иной формы влияют следующие условия  [c.518]

    С насыщенными углеводородами (алканами и цикланами) генерирования радикалов под действием Ме"+ и О2 не наблюдается. Наоборот, как отмечалось выше, металлы в состоянии низшей валентности часто вызывают длительные периоды индукции из-за обрыва цепей по реакции ROa с Ме"+, а это означает, что радикалы в углеводороде, не содержащем ROOH, генерируются по реакциям без участия катализатора (например, по реакции RH с О2). Если бы катализатор генерировал радикалы со скоростью, превышающей скорость реакции RH с О2, то он оказывал бы ускоряющее, а не тормозящее действие. Следовательно, в окисляющихся углеводородах в подавляющем большинстве случаев можно исключить участие катализатора в зарождении цепей по его реакции с RH или с RH и О2. Главный источник радикалов — реакция ROOH с Ме"+, а также Ме + с кислородсодержащими соединениями — продуктами окисления углеводорода. Вопросы селективного каталитического окисления углеводородов подробно рассмотрены в обзоре Эмануэля [298]. [c.204]

    Трансфера,бельность — переносимость из одной молекулы в другую, структурно родственную, ряда молекулярных свойств. К примеру, длины связей С—С и С—Н во всех насыщенных углеводородах с точностью до 0,5 % постоянны, а энергии атомизации алканов с точностью до 2 % равны сумме средних энергий разрыва всех связей С—С и С -Н, [c.206]

    Трициклические углеводороды с двумя бензольными кольцами и одним пятичленным насыщенным кольцом (аценафтен) несколько слабее адсорбируются на кристаллах карбамида и его комплексах с н-алканами. Это можно объяснить тем, что в насыщенном кольце на один углеродный атом меньше, чем у тетралина, а электронное облако в меньшей степени смещено от оси симметрии молекулы. Самая слабая интенсивность спектра поглощения ЭПР обнаружена у трициклических углеводородов (антрацен), причем поверхность кристалла насыщается пара-магннтными центрами антрацена при его концентрации в растворе порядка 0,8-1.0% (масс.),в то время как в [c.50]

    Углеводороды являются важнейшей составной частью любой нефти. И хотя содержание их в различных нефтях далеко не одинаково от 30—40 до 100% (в газовых конденсатах), все же в среднем до 70 мас.% всех нефтей составляют углеводороды. История развития такой научной дисциплины, как химия нефти,— это фактически история развития химии углеводородов. Начало исследований по химии нефти было положено известным немецким химиком К. Шор-леммером, обнаружившим в нефтях Пенсильвании (США) и-бутан, к-пентан и к-гексан. Успех работы во многом был связан с тем, что ранее Шорлеммер выполнял работы по синтезу нормальных алканов в лаборатории своего учителя А. Вюрца. Спустя 20—25 лет русский химик В. В. Марковников, исследуя отечественные (бакинские) нефти, пришел к выводу о том, что основными углеводородами в этих нефтях являются уже не алифатические, а циклические — насыщенные углеводороды ряда циклоиентана и циклогексана, названные им нафтенами. И здесь Марковникову помогли его более ранние работы по синтезу и исследованию свойств циклоалканов, выполненные в лаборатории А. М. Бутлерова. Таким образом, еще в конце прошлого столетия были заложены методологические осно вы химии нефти, т. е. синтез модельных углеводородов с последующим нахождением их в нефтях. Тогда же были сформулированы и первые представления о химической классификации нефтей, предполагающей деление нефтей на два основных класса парафиновый и нафтеновый. [c.7]

    Нефти типа A по групповому составу фракции 200—430° С соответствуют нефтям парафинового и нафтено-парафинового основания. Чаще всего это нефти с высоким содержанием бензиновых фракций и с относительно низкой смолистостью. В составе насыщенных высококинящих углеводородов значительную роль играют углеводороды ряда метана, содержание которых в пересчете на насыщенную часть фракции 200—430° С составляет 40—70%. Для нефтей этого типа характерна высокая концентрация нормальных алканов (5—25%, на исследуемую фракцию). Содержание изопреноидных алканов в этих нефтях колеблется в пределах 0,05—6%. При этом содержание алканов всегда выше содержания изонреноидов и изопреноидный коэффициент = (и.С1д+и.С2о)/(н.С1,-(-н.С18)< <1- [c.19]

    Нефти тнаа соответствуют нефтям парафино-нафтенового и особенно нафтенового оснований. Среди насыщенных углеводородов преобладают циклоалканы, содержание которых изменяется от 60 до 75%. Среди циклоалканов, как правило, преобладают moho-, би- и трициклические углеводороды. Алкановые же углеводороды, содержание которых колеблется в пределах 5—30%, представлены главным образом только разветвленными структурами. Небольшое количество нормальных алканов найдено только с помощью молекулярных сит или путем термической диффузии. На хроматограммах нефтей пики нормальных алканов не проявляются, так как их суммарная концентрация не превышает десятых долей процента. Концентрация изопреноидов 0,5—6% на фракцию 200—430° С. [c.25]

    Углеводороды серии I и II элюируются на хроматограммах на обычном месте выхода монометилалканов с метильным заместителем, расположенным в середине молекулы. Состав и строение этих углеводородов были доказаны методом хромато-масс-спектрометрии. Количество рассматриваемых углеводородов в нефтях колеблется в пределах 10—90% от содержания нормальных алканов, элюирующихся в тех же интервалах. Типичная хроматограмма насыщенной -фракции 200° — к.к. для рассматриваемых нефтей приведена на рис. 20. Перечень найденных в нефтях метилалканов данной серии помещен в табл. 18. [c.57]

    Превращения непредельных жирных кислот приводят к образованию широкой гаммы алканов, цикланов и аренов. Так, например из олеиновой кислоты была при 250° С получена смесь (1 1) насыщенных и ароматических углеводородов, масс-спектральный анализ, которой приведен в табл. 50. Как видно из этой таблицы, процессы, циклизации непредельных кислот протекают с образованием не только моноцикланов и моноаренов, но и би- и трициклических углеводородов. Исследование продуктов реакции, а также промежуточно образующихся соединений показало, что основным процессом здесь является дегидратационная циклизация, проходящая по схеме кислота лактон -> кетон -> углеводороды. [c.195]

    Процесс образования нормальных алканов в нефтях достаточно сложен. Обычно считается, что основной реакцией является декарбо-ксилирование жирных кислот. Не вызывает сомнений то, что такая реакция протекает при контакте насыщенных кислот с алюмосиликатами. Это, в частности, было доказано опытами с бегеновой и стеариновой кислотами [1, 27, 29. 30]. Однако даже в этих весьма простых опытах, кроме обычного декарбоксилирования, происходят и другие реакции, следствием которых является образование не только соответствующего нормального алкана, но и целой серии нормальных алканов как большей, так и меньшей молекулярной массы. На рис. 73 приведена хроматограмма смеси нормальных алканов, выделенных из продуктов превращения стеариновой кислоты на алюмо-си.чикате. Кроме п.гептадскана (70%), получены а.пканы иной молекулярной массы, без преобладания нечетных (или четных) углеводородов. Наиболее интересно здесь образование углеводородов i , и выше, которые получаются в результате кетонизации части кислоты с образованием стеарона. В дальнейшем стеарон подвергается деструкции и восстановлению и образуются различные углеводороды. [c.198]

    В этих реакциях вначале равновероятно протекает образование как насыщенных, так и ненасыщенных углеводородов, в результате чего будет получаться равностатистическая смесь нормальных алканов и алкенов-1 различной молекулярной массы  [c.199]

    Попытка газохроматографического анализа даже однородных (в смысле цикличности) фракций обычно не приводит к успеху, и хроматограммы смесей нафтенов имеют обыкновенно вид горба , т. е. углеводороды элюируются сплошным фоном (см. рис. 102). Все это указывает на исключительную сложность, а главное многокомпонентность смесей нафтеновых углеводородов. Не надо, впрочем, думать, что газовая хроматография вообш е бессильна при анализе высококинящих нефтяных углеводородов. В тех случаях, когда в смесях находятся углеводороды, концентрации которых на порядок и более превышают средний уровень концентрации, то газовая хроматография может служить прекрасным методом анализа нефтяных углеводородов любого молекулярного веса. Этим путем, например, хорошо определяются концентрации нормальных алканов и изопреноидных углеводородов [28]. Для иллюстрации на рис. 102 приведены хроматограммы насыщенных углеводородов во фракции 200—300° С двух нефтей парафинистой и нафтеновой. [c.360]

    Однако главным и основным источником образования алканов, так же как и других углеводородов нефти, являются жирные кислоты — основные составляющие липидов морской растительности и зоопланктона. Не вглзывает сол4нений, что реакция декарбоксилирования действительно протекает при контакте насыщенных жирных кислот с глинами. Это доказано в опытах со стеариновой и бегеновой кислотами. Однако в этих, наиболее простых, примерах кроме обычного декарбок илирования протекают и другие реакции, следствием чего является образование не только нормальных алканов, имеющих па один лтпм углерода меньше, чем исходная кислота, но и образование целой серии алканов [c.37]

    Разработана методика разделения насыщенных углеводородов нефтяных фракций на алканы, изоалканы, и циклоалканы жидкостной хроматографией на угле марки БАУ, дополнительно активированном разбавленной азотной кислотой [87]. Установлена следующая последовательность адсорбции углеводородов нормальные алканы > циклоалканы с длинной боковой цепью > > разветвленные алканы > полиалкилзамещенные циклоалканы. Адсорбция проводилась при 20°С, слабо адсорбированные углеводороды удаляли из колонки изооктаном, а десорбцию нормальных алканов осуществляли гексаном при 50—60 °С. [c.63]

    Под групповым анализом углеводородов понимают анализ по типу молекул при этом определяется содержание аренов, алкенов, циклоалканов и алканов. К аренам относят молекулы, содержащие хотя бы одно ароматическое кольцо. Алкенами считают молекулы, имеющие хотя бы одну двойную связь. К циклоалканам относят молекулы, содержащие хотя бы одно насыщенное кольцо. И, наконец, алканами считаются молекулы углеводородов, не имеющие ни ароматических, ни насыщенных колец, ни двойных связей. [c.113]


Смотреть страницы где упоминается термин Алканы Углеводороды насыщенные: [c.186]    [c.210]    [c.54]    [c.114]    [c.335]    [c.306]    [c.222]    [c.371]    [c.106]    [c.55]    [c.75]   
Органическая химия Том 1 перевод с английского (1966) -- [ c.46 , c.75 , c.125 , c.289 , c.290 ]




ПОИСК





Смотрите так же термины и статьи:

Алканы

Насыщенные углеводороды



© 2025 chem21.info Реклама на сайте