Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрические и магнитные методы

    На базе учения о химическом равновесии был разработан новый метод исследования химических систем — метод физико-химического анализа. Он основан на изучении зависимости физических свойств химической равновесной системы от факторов, определяющих ее равновесие. В качестве изучаемых свойств могут быть выбраны тепловые, объемные, электрические, магнитные, оптические и другие свойства. Обычно изучается один из факторов, определяющих состояние равновесия системы, — ее состав. Метод исследования химических взаимодействий веществ в системах, основанный на изучении изменения физических свойств системы с изменением ее состава и построении диаграмм состав — свойство, находит широкое применение, от метод после Ломоносова был широко использован Менделеевым и получил дальнейшее развитие в работах Д. П. Коновалова, И. Ф. Шредера, В. Ф. Алексеева и др. Особенно большой вклад в создание физико-химического анализа как самостоятельного метода исследования внес Н. С. Курнаков и его ученики. Многочисленные работы Курнакова по изучению металлических, органических и солевых систем показали, что физико-химический анализ является важным, а иногда и единственным методом исследования сложных систем. По определению Курнакова физико-химический анализ есть ...геометрический метод исследования химических превращений . Метод физико-химического анализа позволяет на основании изучения изменений физических свойств системы в зависимости от количественных изменений ее состава установить протекающие в системе качественные изменения, характер взаимодействия между компонентами, области существования и составы равновесных фаз. Для этого применяют геометрический анализ диаграмм состояния, построенных в координатах физическое свойство — фактор равновесия (Р, Т, состав). [c.337]


    ГОСТ 12119.7-98. Сталь электротехническая. Методы определения магнитных и электрических свойств. Метод измерения удельного электрического сопротивления мостом постоянного тока. [c.287]

    Поскольку коэффициенты молекулярного переноса тепла и массы (теплопроводности и диффузии) в однородных системах от электрических, магнитных и других воздействий непосредственно не зависят, методы интенсификации тепломассообмена ориентированы в основном на изменение гидродинамической обстановки на границе фаз, т. е. на вынужденную конвекцию. [c.145]

    Методы НК подразделяют (ГОСТ 18353—79) на оптические, капиллярные (люминесцентный и цветной), ультразвуковые, радиационные, электрические, магнитные и электромагнитные и другие [1, 2]. [c.478]

    Акустические колебания совершаются с малой амплитудой, т. е. они соответствуют начальному участку кривой напряжение — деформация. Прогнозировать по параметрам акустических волн поведение кривой при больших напряжениях и деформациях аналитически невозможно. В связи с этим ищут корреляционные зависимости акустических параметров от прочности материалов. Для повышения точности предсказания иногда используют несколько акустических параметров или помимо акустических учитывают другие свойства (электрические, магнитные), контролируемые соответствующими неразрушающими методами. [c.252]

    Физические методы очистки нефтепродуктов включают очистку под воздействием гравитационных, центробежных, электрических, магнитных, электродинамических и других сил, очистку путем фильтрования нефтепродуктов через пористые перегородки, а также комплексную очистку комбинацией этих методов. Физические методы очистки подробно и полно описаны в работах [c.43]

    Характер химических превращений и свойства веществ зависят от строения реагирующих молекул и особенно от размеров и расположения входящих в них атомов, межъядерного расстояния и энергии химических связей, зарядов атомов и атомных группировок, моментов инерции молекул. Не всегда подобные характеристики могут быть рассчитаны теоретически. Очень часто привлекаются опытные данные, получаемые путем исследования электрических, магнитных, оптических и других свойств веществ. Знание экспериментально получаемых молекулярных характеристик важно для проверки гипотез о механизме химических процессов. Кратко остановимся лишь на принципах наиболее важных методов экспериментального исследования строения молекул.  [c.49]

    Электрические и магнитные методы сепарации Сб статен Изд Наука 1965 [c.419]


    Помимо изложенных в гл. 1—6 методов исследования известно большое число других методов и методик, позволяющих определять специальные свойства веществ физико-механические, термические, электрические, магнитные и др. [c.168]

    Для получения информации о взаимодействии коллоидных частиц перспективен метод воздействия на дисперсные системы внешних электрических, магнитных и ультразвуковых полей. Применение внешних полей, провоцирующих структурообразование в системе, позволяет во многих случаях дать количественное описание этого процесса и выяснить характер взаимодействия микрообъектов в отсутствие поля. Исследование поведения суспензий в электрическом поле также имеет значение в связи с внедрением в промышленность метода электрофоретического нанесения покрытий. [c.134]

    Пособие содержит 120 задач по важнейшим разделам, связанным со строением и свойствами молекул. В нем нашли отражение основы классической и квантовомеханической теории строения молекул, закономерности в геометрической конфигурации молекул, приведены основные методы расчета энергетических, электрических, магнитных и других свойств молекул. Большое внимание уделено задачам, рассматривающим электронные, колебательные и вращательные состояния, молекул. Для большинства задач даны подробные решения или ответы. [c.2]

    Книга представляет собой учебное пособие, в котором дано систематическое, но не слишком специальное и сложное изложение основных понятий физики и химии твердых тел. Изложены основы теории твердого состояния. Рассмотрены тепловые, механические, электрические, магнитные, радиотехнические и оптические свойства. Дан обзор современных методов исследований, кратко изложены основы физики и химии поверхностей. Изложены общие сведения [c.2]

    Магнитное поле в магнитном методе неразрушающего контроля используется для намагничивания и размагничивания проверяемых объектов. Оно создается электрическим током или постоянными магнитами. [c.229]

    За годы, прошедшие со времени принятия Программы КПСС, выли достигнуты большие успехи в деле химизации народного хозяйства. Созданы новые материалы с разнообразными функциями, в том числе жаростойкие, керамические, сверхтвердые и конструкционные, материалы для квантовой электроники и космической техники. Разработаны новые процессы получения сверхчистых, тугоплавких металлов и сплавов. Новые методы подготовки рудного сырья к переделу позволили существенно интенсифицировать металлургические процессы. Широкое использование экстремальных воздействий, включая крайне низкие и сверхвысокие температуры и давления, ультразвук, электрические, магнитные и акустические поля, радиацию и ионную имплантацию, лазерные излучения и ударные волны, позволили разработать принципиально новые технологические процессы и материалы (например, искусственные алмазы, специальные стали и сплавы, разнообразные композиты). [c.9]

    Предметом данной книги являются, с одной стороны, введение в теорию химической связи в объеме, необходимом для овладения полуэмпирическими методами квантовой химии (этому посвящена гл. 10, которой заканчивается методическая часть книги), а, с другой стороны, изучение взаимосвязей между строением молекул и их свойствами. Что касается свойств, под ними понимаются как статические характеристики (термохимические, электрические, магнитные, оптические), так и динамические характеристики, т. е. реакционная способность, определяемая константами равновесий и скоростей. Следует уточнить, как мы будем толковать понятие структура . В узком смысле слова под структурой понимается расположение атомов в молекулах, а также упаковка молекул в кристаллической решетке. То, что понимается под структурой в этом смысле, во многих случаях теперь определяется непосредственно методами рентгеноструктурного анализа. Что же касается интересующих нас проблем, мы будем чаще всего подразумевать под структурой исследуемого соединения его расчетные теоретические характеристики, которые сравниваются со свойствами, найденными экспериментально. [c.10]

    Физические методы анализа. Наличие того или иного химического элемента в образце можно обнаружить и не прибегая к химическим реакциям, основываясь непосредственно на изучении физических свойств исследуемого вещества. Например, летучие соединения некоторых химических элементов, внесенные в бесцветное пламя газовой горелки, окрашивают его в характерные цвета. Методы анализа, дающие возможность определять состав исследуемого вещества, не прибегая к использованию химических реакций, называют физическими методами анализа. К физическим методам анализа относятся также методы, основанные на изучении оптических, электрических, магнитных, тепловых и других физических свойств анализируемых веществ. [c.143]

    В настоящей главе проанализированы механические свойства композитов. Однако все рассмотренные выше методы и подходы применимы для прогнозирования, описания и разработки композиционных материалов с новыми электрическими, магнитными, оптическими и другими свойствами. [c.89]


    Акустический, магнитный, электрический, электромагнитный методы изложены в сжатом виде, что вызвано ограниченностью объема книги. По ним даны ссылки на литературные источники. [c.3]

    Проблема контроля механических напряжений в элементах конструкций является актуальной для многих отраслей промышленности, в частности, космической, авиационной, энергетической, химической, автомобильной. Острота проблемы обусловила разработку многочисленных методов неразрушающего контроля -механических, акустических, электрических, магнитных, оптических, рентгеновских, нейтронно-дифракционных и др. Естественно, не существует универсального метода, пригодного в любых условиях - при наличии определенных достоинств каждый из перечисленных методов обладает и рядом недостатков. [c.15]

    Химия висмутовых материалов в минувшие 10—15 лет успешно развивается по целому ряду направлений. Особый интерес проявлен к созданию высокотемпературных сверхпроводящих материалов, хотя в последнее время темпы исследований снизились. До сих пор не преодолены недостатки традиционных методов синтеза В1-ВТСП, такие как низкая скорость, неполное завершение твердофазной реакции, сложность направленного формирования реальной структуры материала, определяющей его структурно-чувствительные свойства. В то же время нарастает интерес к созданию материалов с полезными электрическими, магнитными, оптическими свойствами — твердоэлектролитных, сегнетоэлектрических, пьезоэлектрических и др. При этом повышенное внимание уделяется созданию тонкопленочных структур. Продолжается поиск активных и селективных висмутовых катализаторов реакций окисления углеводородов как существенной части промышленного гетерогенного катализа. Значительные успехи достигнуты в разработке эффективных лекарственных висмутсодержащих препаратов. Другие направления висмутового материаловедения развиваются менее интенсивно, но ситуация обещает измениться в ближайшей перспективе, особенно в части создания стекол различного назначения, сцинтилляторов, косметических средств, пигментов и др. [c.356]

    Определение основных характеристик полупроводников электрическими, оптическими и магнитными методами. [c.200]

    ЭЛЕКТРИЧЕСКИЕ И ]МАГНИТНЫЕ МЕТОДЫ [c.211]

    Химические элементы можно обнаруживать, и не прибегая к химическим реакциям, основываясь непосредственно на изучении физических свойств исследуемого вещества. Например, летучие соединения некоторых химических элементов, внесенные в бесцветное пламя газовой горелки, окрашивают его при накаливании испытуемого вещества в пламени электрической искры или дуги пламя также окрашивается в характерные для каждого элемента цвета. При помощи специального прибора, спектроскопа, устанавливают присутствие данного элемента по появлению характерных линий или полос в спектре исследуемого вещества. Указанный метод анализа вещества относится к физическим ме-т >дам анализа. К ним относятся также методы, основанные на изучении оптических, электрических, магнитных, тепловых и других [c.64]

    Спички. Метод оценки стабильности показателей качества. — Взамен ОСТ 13 104—81 Система государственных испытаний продукции. Типовая программа и методика испытаний обоев Статистический приемочный контроль качества металлопродукции по корреляционной связи между параметрами. — Взамен ОРД 14—5.1—89 Неразрушающий магнитный метод контроля механических свойств проката и труб Оборудование электросварочное. Требования к надежности и методам контроля Типовое положение о подразделениях надежности в НИИ и КБ Машины электрические вращающиеся. Двигатели асинхронные взрывозащищенные мощностью до 400 кВт. Надежность. Методы ускоренных испытаний. — Взамен ОСТ 16 0.689.040—74 Средства механизации для предприятий легкой промышленности. Программа и методика испытаний Строительные, дорожные, коммунальные машины и оборудование. Порядок и методы контроля показателей надежности, регламентируемых нормативно-технической документацией [c.220]

    В замкнутых термохимических процессах обычно требуется ряд дополнительных операций, связанных с регенерацией промежуточных продуктов и реагентов. Технологические методы разделения и регенерации могут включать механические, электрические, магнитные методы, конденсацию, адсорбцию, неравновесную закалку, абсорбцию, осаждение, дистилляцию, диффузию и другие технологические операции. Работа разделения и циркуляции может существенно отягощать общие энергетические затраты в процессе и понижать общеэнергетический — термический КПД. Однако, как показывает ряд соображений [557], ситуация остается перспективной. Даже при эффективности Г], = 0,44, которая в практических условиях может еще более снизиться (например, до т]т = 0,30—0,25), термохимический процесс по схеме атомный реактор — термохимический процесс — водород потребует значительно меньших капитальных вложений, чем система по схеме атомный реактор — паровая турбина — электрогенератор — электролизер — водород. Использование низкопотенциального тепла процесса (500—600 К) безусловно улучшит общее тепловое использование химического двигателя. [c.356]

    В настоящее время для обнаружения и идентификащ1и дефектов используется широкий спектр методов неразрушающего контроля (НК). Современная классификация методов НК включает девять видов контроля электрический, магнитный, вихретоковый, радиоволновой, тепловой, ви-зуально-измерительный, радиационный, акустический и проникающими веществами [59]. По причинам конструктивного и эксплуатационного характера при диагностировании крупногабаритных конструкций испо.иьзу-ются, в основном, следующие методы НК магнитный коьггроль (ГОСТ [c.28]

    ГОСТ 12119.3-98. Сталь электротехническая. Методы определения магнитных и электрических свойств. Метод измерения коэрцитивной силы в разомкнутой магнитной цеои. [c.287]

    Особое место среди электрических и магнитных методов занимают масс-спектральные. Подвергая действию сильных магнитных и электрических полей сложные газообразные смеси, разделяют их на отдельные компоненты в соотв етствии с атомным или молекулярным весом. Этот метод наиболее широко применяется в исследовании смесей изотопов и в анализе смесей инертных газов. [c.18]

    Методы анализа, при помощи которых можно определять состав исследуемого вещества, не прибегая к использованию химических реакций, называют физическими методами анализа. К физическим методам анализа относятся методы, основанные на изучении оптических, электрических, магнитных, тепловых и других физических свогктв анализируемых веществ. [c.24]

    Однако теперь следует различать и более конкретные свойства кинетических структонов, ибо динамическая структура может изменяться под действием факторов разной природы — электрических, магнитных, механических и т. д. Соответственно, надо различать типы релаксации и хорошо понимать, что участие в релаксационных процессах одинаковых по шкале геометрических масштабов кинетических структонов, отнюдь не означает тождественности процессов, регистрируемых, скажем, дина-момеханическими или электрическими методами. [c.179]

    Последняя из групп методов разделения объединяет. методы, основанные на различиях в свойствах ионов, ато.мов или молекул, проявляемых в пределах одной гомогенной системы при воздействии электрического, магнитного, гравитационного, теплового полей или центробежных сил. При этом не исключается возможность фазовых превращений при переводе исходной смеси веществ в то агрегатное состояние, в котором происходит разделение, или при выделении фракций ее отдельных компонентов. Эффект разделения достигается за счет различного пространственного перемещения веществ в пределах фазы, в которой происходит их разделение. Различия в скорости пространственного перемещения ионов, атомов или молекул будут проявляться в зависимости от их массы, размеров, заряда, энергии взаимодействия частиц с ионами и молекулами, образующими среду, в которой происходит разделение. Относительная роль тех или иных факторов в достижении конечного эффекта разделения, в свою очередь, зависит от природы действующих на них сил. Наиболее очевидный случай — электрофоретическое или, как его иногда называют, электромиграционнос разделение ионов в растворах за счет различных скоростей их движения в электрическом поле. Здесь важнейшими факторами оказываются размер и заряд иона. Различия в массе и заряде в наибольщей степени проявляются при воздействии па ионизованные частицы ускоряющего электрического поля и отклоняющего магнитного. Этот способ воздействия на систему лежит в основе масс-сепарационного метода. При разделении под воздействием центробежных сил — ультрацентрифугировании определяющим фактором оказывается масса молекул. [c.241]

    Наиболее распространенные методы получения материалов с особыми механическими, электрическими, магнитными и другими свойствами основаны на широком использовании фазовых превращений в сплавах. Свойства сплавов теснейшим образом связаны с их структурой, кристаллической и субмикроскопи-ческой. Последняя возникает в гетерофазных состояниях и определяется формой, взаимным расположением и степенью дисперсности продуктов фазового превращения. Особенно ценными физическими свойствами обладают так называемые стареющие сплавы с высокой степенью дисперсности фазовых составляющих. В современной технике используются сплавы, находящиеся как в гомогенных, так и в гетерофазных (гетерогенных) состояниях. В первом случае материал представляет собой однофазный твердый раствор, физические свойства которого в основном определяются структурой кристаллической решетки. Во втором случае это смесь фаз, отличающихся друг от друга составом и кристаллической структурой. Таким образом, тщательное изучение кристаллической и субмикроскопической (гетерогенной) структуры сплавов имеет большое научное и практическое значение. Оно 1Юзволяет установить связь между структурой и свойствами сплавов. [c.6]

    Физические методы измерения напряжений основаны на зависимости физических свойств материала от внутренних напряжений. Поскольку к наличию внутренних напряжений чувствительны многие свойства тел (оптические, электрические, магнитные, размеры кристаллической решетки, внутреннее трение, твердость), эта группа методов весьма обширна. Широко применяется оптический метод, основанный на эффекте искусственного двойного лучепреломления, возникающего под действием напряжений. При освещении таких оптически активных материалов поляризованным светом появляется окраска или картина чередующихся полос интерференции, но которым рассчитывают внутренние напряжения [243—253]. Метод оказывается весьма удобным для материалов, обладающих оптической активностью (кристаллов, неорганических стекол, некоторых полимеров). Метод широко применяется для измерения напряжений в различных (стеклянных) деталях электровакуумных приборов [254—260]. В случае слоистых пластиков и стеклопластиков напряжения в связующем также могут быть измерены по двойному лучепреломлению света [261, 263—266]. Поляризационно-оптический метод может быть применен для тонких оптически чувствительных покрытий на непрозрачной подложке, например для электроизоляционных пленок на металлах [206, 262, 267, 270], для которых обнаружено хорошее совпадение значений напряжений с результатами, полученными консольными методами [206]. Иногда, применяя ноляризационно-онтический [221, 271] метод, удается измерять внутренние напряжения в реальных клеевых системах, например в конструкциях из оргстекла, оптического стекла. [c.236]

    Применение магнитного метода к изучению адсорбционных катализаторов также свидетельствует о значительной атомной диспергации металла на новерхности [168]. Имеющую место дискуссию по вопросу о сверхпарамагнетизме 169, 170], по-видимому, и экспериментально [24, 171, 172] и теоретически 173] следует считать разрешенной в пользу действительности этого явления, но для целей распознания физического состояния нанесенного металла этот вопрос имеет второстепенное значение. Прямые результаты применения термомагнитного метода к адсорбционным никелевым катализаторам [174, 175] показывают, что соотношение между атомной и кристаллической фазами меняется в зависимости от способа нанесения катализатора, режима восстановления и термической обработки [176], но в общем процент атомов, пошедших на образование кристаллической фазы, не очень велик и не превышает 10% [174] при тех концентрациях, при которых имеют место экстремальные зависимости активности. Изучение магнитных свойств [177], ЭПР [178 179] и электрического сопротивления [179] [c.123]

    Одновременно с электрическими методами разрабатывались магнитные методы изучения хемосорбции (главным образом Селвудом [23]), оптические и фотохимические методы (Терени-ным и его сотрудниками [24], а также Эйшенсом и Плискиным [25]). За последнее время получили очень широкое применение различные методы с привлечением изотопов [26]. К сожалению мы не можем уделить внимание подробностям возникновения и развития всех этих методов, хотя исследователи, потрудившиеся над их созданием, сделали тем самым неоценимый вклад в развитие учения о катализе. С помощью всех указанных методов, иногда посредством комбинации их, были достигнуты довольно значительные успехи в изучении промежуточных поверхностных форм и на этой основе — механизма каталитического акта многих реакций. [c.267]

    Надо отметить, что быстрый рост числа соединений (например, углеводородов) с ростом их молекулярного веса ие позволяет детально исследовать адсорбционные свойства каждого из этих веществ. Поэтому весьма важно научиться эти свойства предсказывать на основании строения молекул исследуемых соединений. В идеале хотелось бы уметь предсказать статические адсорбционные свойства и динамические условия разделепия смесей, зная только электрические, магнитные и геометрические свойства адсорбата и адсорбента, состав и концентрацию газовой илп жидкой смеси. Конечно, эта задача чрезвычайно трудная, и мы еще очень далеки от ее разрешения. Однако весьма важно ее поставить и уже теперь направить теоретическую и экспериментальную работу по этому пути. Некоторые вопросы относительно природы адсорбционных сил и возможности расчета энергии адсорбции и адсорбционных равновесий как будто проясняются, так что комбинация теоретических и полуэмпирических методов [1—4] уже в настоящее время помогает понять и полу количественно илп хотя бы качественно предсказать свойства многих практически ваншых адсорбционных систем. В настоящем сообщении этим вопросам уделяется основное внимапие. Мы начнем с анализа простейшего случая, т. е. с адсорбции на однородной поверхности неполярных, а затем и некоторых полярных адсорбентов, а дальше рассмотрим более сложные случаи, которые имеют место при химическом модифицировании поверхности адсорбента путем обр 13овапия или разложения на ней различных соединепий, в частности соединений, обладающих избирательностью по отноше- [c.45]

    Такое правильное расположение огромного числа молекул (или других частиц) делает возможным применение специальных методов исследования. Например, анизотропия оптических, электрических, магнитных или механических свойств кристалла может быть связана с анизотропией его молекулярных свойств, в частности таких, как повышенная поляризуемость ароматической молекулы в плоскости системы ароматических колец. Но наиболее важным следствием является возможность диффракционного анализа. В 1912 г. Лауз впервые высказал предположение, что кристалл представляет собой трехмерную решетку с размерами сеток, подходящими для диффракции рентгеновых лучей это предположение было быстро подтверждено практикой рентгеновского эксперимента, а в дальнейшем аналогичные эффекты были получены с помощью пучков электронов, нейтроно в и других излучений. До сих пор в большинстве структурных работ использовалось рентгеновское излучение, и именно о нем будет идти речь в начале этой главы. [c.54]

    Ионы, получающиеся в аналитической камере, разделяются с помощью магнитного и электрического полей. Метод подробно описан В. М. Чулановаким .  [c.407]


Смотреть страницы где упоминается термин Электрические и магнитные методы: [c.439]    [c.128]    [c.9]   
Смотреть главы в:

История органической химии  -> Электрические и магнитные методы

История органической химии -> Электрические и магнитные методы




ПОИСК





Смотрите так же термины и статьи:

Электрические и магнитные



© 2025 chem21.info Реклама на сайте