Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

АНАЛИЗ АНИОНОВ Разделение анионов на группы. Методы анализа

    РАЗДЕЛЕНИЕ АНИОНОВ НА ГРУППЫ. МЕТОДЫ АНАЛИЗА 1. Аналитическая классификация анионов [c.439]

    Капельный и дробный методы анализа находят в анализе анионов широкое применение. Групповые реагенты — соли серебра и бария и реже соли ртути и свинца, а также смесь солей кальция и бария применяют обычно не для разделения анионов на аналитические группы, а только для обнаружения различных групп анионов в растворе, так как применение этих реагентов не обеспечивает четкого разделения анионов на группы. Важное значение имеют также реагенты, позволяющие установить присутствие или отсутствие анионов-восстановителей или анионов-окислителей, взаимно исключающих присутствие друг друга. [c.296]


    Наибольшее число работ по неорганической ТСХ посвящена разделению и идентификации катионов. Первые работы в области анализа неорганических солей методом ТСХ были связаны с систематическим ходом анализа неорганических элементов, входящих в органические соединения предварительное разделение исследуемой смеси неорганических ионов на аналитические группы классическим методом анализа и последующее разделение с помощью ТСХ катионов групп меди, сульфида аммония, карбоната аммония, щелочной группы, смеси анионов на отдельные компоненты [90,, стр. 467—474]. [c.44]

    Наряду с классификациями элементов, прямо связанными с периодической системой (периоды, группы, подгруппы, ряды, блоки), исторически сложились еще иные, которые отражают те или иные существенные особенности соответствующих элементов, имеющие значение для рассматриваемой проблемы. Из числа этих классификаций для химического анализа имеет значение старейшее по происхождению деление элементов на металлы и неметаллы. Это деление первоначально основывалось и сейчас еще включает в себя состояние соответственных простых веществ при обычных условиях. В химическом отношении, что важно для аналитической химии, оно выражает тенденцию к образованию, по крайней мере в низших валентных состояниях, катионов (металлы) или анионов (неметаллы), причем речь идет как о простых анионах, так и о сложных (т. е. типа 8 - и МОг)-Для аналитической химии это деление издавна имеет колоссальное значение, так как катионы разделяют посредством ионных реакций с различными анионами (классический сероводородный метод качественного анализа, бессероводородные неорганические схемы анализа катионов), а анионы — соответственно с катионами. В последние десятилетия присоединились ионообменные методы разделения и методы разделения ионов с помощью электролиза. Кроме металлов и неметаллов, часто в последнее время различают еще полуметаллы, или иначе металлоиды (что не следует путать с устаревшим применением термина металлоид как синонима слова неметалл ). К ним относятся элементы, обладающие как в виде простых веществ, так и в соединениях промежуточными свойствами бор, кремний, германий, мышьяк, сурьма, теллур, астат. [c.15]

    Дробные методы анализа, основанные на открытии анионов из отдельных порций исследуемого раствора, успешно применяют для анализа смесей, не содержащих мешающих друг другу анионов. Более сложные смеси вызывают необходимость предварительного разделения их на отдельные группы. Многие анионы при совместном присутствии могут быть обнаружены дробным методом в отдельных порциях исследуемого раствора. [c.360]


    Разделению катионов методом хроматографии с обращенными фазами посвящено множество работ. Однако приведенные в литературе системы применимы только в отношении небольших групп катионов (табл. 51.1). В связи с этим была разработана общая схема анализа многокомпонентных систем, включающая ионообменную хроматографию и хроматографию с обращенными фазами [57]. В последнее время разработана схема количественного разделения большой группы катионов (рис. 51.5) [61], основанная на способности некоторых катионов образовывать комплексы анионного типа. [c.330]

    Дробные методы анализа, основанные на открытии анионов из отдельных порций исследуемого раствора, успешно применяют для анализа смесей, не содержащих мешающих друг другу анионов. Более сложные смеси вызывают необходимость предварительного разделения их на отдельные группы. [c.311]

    В противоположность катионам анионы в большинстве случаев не мешают обнаружению друг друга. Поэтому к реакциям отделения анионов приходится прибегать только в сравнительно редких случаях. Чаще же обнаружение анионов ведут дробным методом, т. е. прямо в отдельных порциях исследуемого раствора. В соответствии с этим при анализе анионов групповые реагенты применяются обычно не для разделения групп, а лишь для их обнаружения. Отсутствие в исследуемом растворе какой-либо группы значительно облегчает работу. [c.316]

    Схема разделения предполагает применение макрометода. Ведут систематический анализ выделенных аналитических групп, используя дробные методы открытия анионов в образовавщихся подгруппах с небольшим числом ионов. Ион СО должен быть открыт непосредственно в исходном образце. Систематический анализ начинают с содовой вытяжки , проводящейся с целью удаления всех многозарядных катионов. [c.154]

    Гл. X. Разделение анионов на группы. Методы анализа [c.440]

    Хорошей иллюстрацией может служить тот факт, что до 1954 г., т. е. до того момента, когда было предложено уравнение, учитывающее влияние концентрации и pH элюента на разделение анионов слабых неорганических кислот [3], две школы исследователей в двух различных лабораториях эмпирически пытались разработать метод анализа смесей практически важных соединений — слабо конденсированных фосфатов. Обе группы потерпели неудачу. [c.124]

    Сознательный подход к групповому разделению позволяет использовать для этой цели метод, наиболее подходящий для анализируемой смеси ионов. Система группового разделения анионов, как это будет показано ниже, имеет меньшее значение в качественном анализе. Деление анионов на группы используют главным образом только для предварительного ориентировочного определения присутствующих в растворе анионов. [c.275]

    Для полного анализа смеси ионов нужно провести ряд последовательных операций разделения ионов на группы. После отделения группы ионов действием группового реактива (например, путем осаждения) оставшуюся часть анализируемого раствора подвергают действию другого группового реактива и отделяют еще одну группу ионов. Отделенные осадки снова растворяют и частными реакциями открывают индивидуальные ионы. В случае необходимости проводят разделение ионов внутри выделенной группы. Так, выполняя последовательно операции осаждения, фильтрования, промывки, растворения, проводят систематический качественный анализ смеси катионов и анионов. При систематическом анализе необходимо соблюдать определенную последовательность операций. Для выполнения этого метода требуется больше времени, чем для дробного анализа, но он позволяет провести полный анализ неизвестной смеси. [c.41]

    РАЗДЕЛЕНИЕ АНИОНОВ НА ГРУППЫ. МЕТОДЫ АНАЛИЗА [c.365]

    Хроматографический метод анализа анионов, описанный в предыдущей главе, заполнил огромный пробел в анализе неорганических веществ. Однако необходимость во второй (компенсационной) колонке усложняет оборудование и до некоторой степени ограничивает выбор элюента и разделительную способность метода. Несомненным достоинством системы было бы непосредственное подключение детектора электропроводности к анионообменной разделяющей колонке. Это возможно лишь в том случае, если концентрация солей в элюенте очень низка, а потому очень низка и фоновая проводимость. Однако обычные ионообменные смолы содержат много обмениваемых групп (в полистирольных смолах примерно одну на каждое бензольное кольцо), и для хроматографического разделения анализируемых ионов требуется применять элюент с высокой концентрацией солей. [c.102]

    Эта система отличается от классификации катионов и анионов в неорганическом анализе, который позволяет определить любой катион в ходе систематической обработки образца. Благодаря технике разделения можно последовательно определить несколько катионов, в то время как методом исключения можно установить присутствие или отсутствие данного аниона. Та же методика исключения применяется и в анализе функциональных групп, при этом важно знать результаты предварительных испытаний и данные качественного анализа, которые дают ценную информацию о химических свойствах вещества. Например, если в веществе не обнаружены гетероэлементы, а есть только углерод, водород и кислород, его следует отнести к группам 1—5. В случае отсутствия кислорода это должен быть алифатический или ароматический углеводород. Сначала устанавливают его характер, а затем на основании физических констант идентифицируют с одним из членов гомологического ряда. Если вен ство содержит углерод, водород и кислород, сначала устанавливают го характер ароматический или алифатический, насыщенный или ненасыщенный, а затем его испытывают на присутствие гидроксильных или кетогрупп. В присутствии гетероэлементов (азота, серы или галогенов) ситуация становится более сложной, так как наряду с гетероэлементом молекула может содержать любые другие углеродсодержащие функциональные группы. Таким образом, после обнаружения гетероэлемента вещество испытывают также на содержание других упомянутых выше функциональных групп. [c.148]


    Дробные методы с успехом применяются для анализа смесей анионов, не содержащих мешающих открытию друг друга анионов. Более сложные смеси вызывают необходимость предварительного их разделения на отдельные группы. [c.96]

    Проста и удобна, например, для быстрого подбора необходимого растворителя методика круговой ТСХ. За очень короткое время (1—2 мин.) она позволяет проводить тонкие разделения. Растворитель подают с помощью специального приспособления в центр нанесенного на тонкий слой пятна. Вещества разделяются с образованием зон в виде концентрических колец. Этот способ целесообразно использовать при разделении основного компонента и примеси. С помощью круговой ТСХ были разделены благородные металлы [203, 204], Си, Со, N1 [209], ряд анионов [206], разделены катионы внутри различных аналитических групп [208], проведен качественный полумикроанализ с обнаружением 40 катионов и 19 анионов после их предварительного разделения экстракцией на 5 групп [207]. Метод круговой ТСХ применен при качественном анализе некоторых минералов и других веществ. [c.19]

    Большую серию экспериментальных исследований по анализу неорганических ионов методом тонкослойной хроматографии провел X. Зайлер [111]. Им выполнен анализ катионов, предварительно разделенных на группы, и анализ анионов. Он установил, что в условиях тонкослойной хроматографии неорганических ионов нельзя пользоваться величиной Rf для идентификации ионов, так как эта величина не является постоянной, как это имеет место в бумажной хроматографии. Величина Rf зависит не только от свойств носителя и состава подвижного раствора, но и от присутствия сопутствующих ионов. Поэтому X. Зайлер вынужден ограничиться только лишь указанием на постоянную последовательность высот поднятия ионов на тонкослойной хроматограмме, полученной по восходящему методу. При обработке хроматограмм можно точно идентифицировать отдельные ионы по известным реакциям обнаружения. [c.185]

    Основные достоинства метода он удобен в полевых условиях и позволяет при незначительных затратах материалов устанавливать качественно, а в ряде случаев и количественно присутствие интересующих элементов в данном образце руды или минерала. Между твердыми веществами практически протекают все реакции, которые протекают между этими же веществами в растворах. В отличие от растворов качественный анализ с применением реакций между твердыми веществами проводится без разделения катионов и анионов на аналитические группы, а в большинстве случаев — вообще без разделения лонов. Такой метод определения данного элемента в присутствии ряда других элементов, входящих в состав изучаемого вещества, носит название дробного анализа и является основным методом полевого. химического анализа. [c.315]

    Хроматографические методы занимают особое место среди физико-химических методов анализа, являясь прежде всего универсальным способом разделения элементов. Они выгодно отличаются от всех других известных методов разделения высокой специфичностью (избирательностью действия), позволяют осуществить разделение весьма близких по свойствам неорганических или органических веществ. Так, например, хроматографическим путем разделяют смеси катионов металлов щелочной группы, щелочноземельных металлов, редкоземельных элементов, элементов-двойников, таких как цирконий и гафний разделяют смеси геометрически изомерных комплексных соединений (например, цис-транс-язомерных комплексов платины или кобальта) отделяют микроколичества трансплутониевых элементов от основной массы урана или плутония, а также от продуктов деления разделяют смеси анионов галидов, кислородных кислот галогенов, фосфорных кислот, аминокислот, смеси органических соединений, являющихся пред- [c.9]

    В полусистематических методах имеет место разделение анионов на группы с помощью групповых реа ктивов и последующее дробное обнаружение анионов. Это приводит к сокращению числа необходимых последовательных аналитических операций и в конечном итоге упрощает схему анализа смеси анионов. [c.274]

    Многие реакции в качественном анализе и титриметрическом методе осаждения (аргентометрия, меркурометрия) основаны на образовании мало растворимых соединений ( 19, 21). Повышенная растворимость галогенидов щелочных металлов объясняется ослаблением сил взаимодействия между ионами в кристаллической решетке. С этим связано отсутствие группового реагента на щелочные металлы. Вещества со слоистыми или молекулярными решетками растворяются лучше, чем вещества с решеткой координационной структуры. Это используют в химическом анализе для разделения катионов подгруппы соляной кислоты от катионов подгруппы сероводорода. Катионы серебра и свинца (II) образуют хлориды, имеющие решетки координационной структуры и поэтому менее растворимы. Хлориды СиС и СсЮЦ имеют слоистые решетки и поэтому хорошо растворимы, как и близкий к ним по строению решетки 2пС 2. Растворимость солеи связана также с радиусами их ионов. Соли с большими катионами и малыми анионами хорошо растворимы, а соли с малыми катионами и большими анионами — плохо (Яцимирский). Растворимость вещества зависит от соотношения полярностей растворенного вещества и растворителя. Установлено также, что растворимость солей зависит от их химической природы, например, для гидроокисей, сульфатов, хлоридов, фторидов элементов 1-й и 2-й групп периодической системы  [c.69]

    В общем анализ смесн неорганических веществ после соответствующих предварительных испытаний может быть представлен в виде общей схемы разделения смеси катионов пяти аналитических групп сероводородным методом (см. гл. VI, 11, стр 342) и схем анализа смеси анионов первой и второй аналитических групп (см. гл. VIII, 27, стр. 426). [c.457]

    Большие возможности открывает путь предварительного перевода составляющих оксидат соединений, содержащих одну или две карбоксильные группы,, в их метиловые эфиры. В частности, предварительно метилированная проба оксидата — продукта направленного окисления октадекана до кислот — подробно исследована по групповому и компонентному составу в результате многоступенчатого разделения, включающего стадии жидкостного хроматографирования на силикагеле, обработки щелочью, экстракции [204]. Учитывая, однако, сложность, длительность и недостаточную изученность такой схемы для исследования оксидатов фракций парафинов, предлагаете) более упрощенная схема разделения и анализа, опробированная на оксидатах Шебекинского химкомбината с различными кислотными числами [205]. Она заключается в том, что из исходной пробы оксидата отгоняют под вакуумом легкокипящую часть, остаток без перевода в метиловые эфиры разделяют, на анионо-обменнике на фракцию парафинов и неомыляемых соединений и фракцию жирных кислот. Легкокипящую часть оксидата, а также извлеченную из слоя анионообменника фракцию парафинов и неомыляемых соединений анализируют по фракционному составу методом газо-жидкостной хроматографии. Фракцию жирных кислот анализируют с помощью методов, применяемых для фракций СЖК (см. разд. 1.3.1.2.5). [c.79]

    В приводимых ниже методах анализа и разделения предполагается, если нет других указаний, что платиновые металлы и золото находятся в виде хлоридов или, точнее, в виде хлорокислот.. Платина, например, в растворах образует хлоре платиновую кислоту HaPt lg и в реакциях ведет себя как часть комплексного аниона. При анализе металлов платиновой группы и золота исходные растворы чаще всего содержат именно эти соединения. Поэтому в основе методов разделения обычно лежат реакции, свойственные этим комплексным анионам или ионам, образующимся в результате разложения таких комплексов. В отдельных случаях при анализе используются также и другие соединения этих металлов. Так, например, при отделении рутения дистилляцией или при отделении родия от иридия восстановлением солями титана (III) целесообразнее оперировать с растворами, в которых эти металлы находятся в виде сульфатов, а для успешного отделения многих неблагородных металлов от платиновой группы гидролитическим осаждением прибегают к предварительному переведению платиновых металлов в комплексные нитриты. [c.406]

    Полусистематические методы анализа дают возможность использовать преимущества систематических и дробных методов анализа. Отделение одних.групп анионов от других при помощи групповых реактивов дает возможность отделить мешающие друг другу анионы, а использование дробного метода открывает возможность сократить число последовательных аналитических операций. В этом случае групповые реактивы используются не только для разделения анионов, но и для обнаружения данной группы анионов. [c.96]

    При систематическом разделении не обнаруживают те анионы, которые легко могут быть обнаружены дробным методом, но вызывают усложнение хода анализа, так как должны быть удалены из раствора перед групповым осаждением и обнаружением других анионов. К ним относятся следующие анионы I группа — -810 , Р и СгОГ П группа-З" , СМ , [Ре(СМ)/ , [Ре(СЫ)б] ВгОз и С10 . Не рассматриваются в систематическом ходе анализа также те анионы-окислители, которые легко восстанавливаются и переходят в соответствующие катионы (например, СгОГ, СггО/ и Мп01). [c.537]

    Хим методы элементного анализа неорг. соединений Основаны на ионных р-циях и позволяют обнаруживать элементы в форме катионов и анионов Для К а катионов используют разл схемы систематич анализа с последоват разделением катионов на группы и подгруппы, внутри к-рых возможна идентификация отдельных элементов Аналит группы обычно именуют по групповому реагенту [c.359]

    В заключение следует остановиться на катионитах с карбоксильными группами [48 ] и на хелатных катионитах, которые также применяются для разделения металлов рассматриваемых групп. Известен метод разделения кобальта и никеля с помощью хелатных катионитов [18] следует, однако, иметь в виду, что разделение этих металлов легко и точно осуществляется с помощью анионитов в солянокислой среде. Тем не менее, использование халатных катионитов имеет определенные преимущества в тех случаях, когде анализируемый раствор содержит анионы или неэлектролиты, мешающие определению этих металлов. Практическим примером может служить активационный анализ следовых количеств металлов (марганца, меди и никеля) в три(поли)фосфатах натрия [25]. Индуцированная радиоактивность натрия-24 и фосфора-32 маскирует у-сцинцияляционные пики слабо радиоактивных веществ. Анализируемый раствор при pH 5 пропускают через колонку с катионитом дауэкс А-1 в Na-форме затем колонку промывают раствором не-радиоацтивного хлорида натрия. При этом удаляются натрий-24 и фосфор-32. Двухвалентные металлы остаются в колонке поскольку радиоактивность никеля-65 слишком мала, чтобы ее можно было обнаружить в присутствии сильно радиоактивного марганца-56, последний подвергают селективному элюированию раствором, содержащим двузарядные катионы нерадиоактивпого марганца. [c.366]

    Рассмотрим сначала изолированное циклопентадиенильное кольцо. Хотя, как уже упоминалось выще, для учета распределения электронов в ферроцене это кольцо можно считать пятиэлектронным донором, при анализе структуры лучше представлять его в виде аниона [С5Н5] . По-прежнему это является только вопросом удобства, так как при расчетах по методу молекулярных орбиталей сначала определяют все необходимые молекулярные орбитали, а затем размещают на них электроны в порядке возрастания уровней энергии орбиталей. Атомные рл-орбитали пяти углеродных атомов циклопентадиенильной группы дают в комбинации пять МО. МО с наименьшей энергией выглядят как два пятиугольника, разделенных узловой плоскостью и имеющих противоположные знаки (рис. 6, а). Если рассматривать МО в направлении сверху вниз, то можно считать, что ее знак везде положительный, как показано на рис. 6, а. При этом, разумеется, учитывают, что имеется вторая половина орбитали, не показанная на рис. 6, а, идентичная верхней половине, но имеющая противоположный знак. Обычно говорят, что фигура, изображенная на рис. 6, а, не имеет узлов, причем узлом в плоскости молекулы пренебрегают, поскольку все МО, возникшие из атомных рл-орбиталей, имеют узлы в этой плоскости. Четыре других МО циклопентадиенила составлены из двух пар орбиталей с разными энергиями МО каждой пары имеют, однако, одинаковое число узлов и одинаковую энергию (дважды вырожденные орбитали). Вырожденная пара с одним узлом (рис. 6, б) обладает более низкой энергией, чем вырожденная пара с двумя узлами (рис. 6, в). В [СзНв] имеется шесть электронов, образующих ароматический секстет. Они занимают три МО, по два электрона на каждой орбитали (рис. 6, а и б). Орбитали [c.20]


Смотреть страницы где упоминается термин АНАЛИЗ АНИОНОВ Разделение анионов на группы. Методы анализа: [c.555]    [c.95]    [c.4]    [c.366]    [c.141]    [c.141]   
Смотреть главы в:

Основы аналитической химии Книга 1 -> АНАЛИЗ АНИОНОВ Разделение анионов на группы. Методы анализа




ПОИСК





Смотрите так же термины и статьи:

Анализ анионов

Анионы группа

Анионы разделение на группы

Методы разделения

Методы разделения на группы

ОБНАРУЖЕНИЕ ИНДИВИДУАЛЬНЫХ АНИОНОВ И АНАЛИЗ СМЕСЕЙ АНИОНОВ Разделение анионов на группы. Методы анализа

Разделение на анионитах

Разделение на группы

групп методы анализа



© 2024 chem21.info Реклама на сайте