Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Групповое разделение анионов

    Аналитическая классификация анионов по группам, в отличие от аналитической классификации катионов, разработана не столь подробно. Описаны различные классификации анионов. Чаще всего деление анионов на группы основано на различной растворимости их солей с ионами серебра и бария, а также их окисли-тельно-восстановительных свойствах в водных растворах. Кроме катионов серебра и бария, для группового разделения анионов используют осаждение катионами Са ", С<1 , РЬ ". Во всех схемах удается логически разделить на группы только часть анионов, так что любая классификация ограничена и не охватывает все анионы, представляющие аналитический интерес (табл. 10.29, 10.30, 10.31, 10.32). [c.147]


    Сознательный подход к групповому разделению позволяет использовать для этой цели метод, наиболее подходящий для анализируемой смеси ионов. Система группового разделения анионов, как это будет показано ниже, имеет меньшее значение в качественном анализе. Деление анионов на группы используют главным образом только для предварительного ориентировочного определения присутствующих в растворе анионов. [c.275]

    С помощью групповых реа кций получают довольно точные сведения о присутствии или отсутствии многих ионов. При этом Обычно применяют реакции осаждения или окисления-восста-новления, характерные для ионов определенной группы. Групповые реакции имеют особенно большое значение в анализе анионов, поскольку практически не существует систематического хода разделения анионов. [c.54]

    Групповые реагенты — соли кальция и бария, реже соли ртути и свинца. Смесь солей кальция и бария применяют обычно не для разделения анионов на аналитические группы, а только для обнаружения различных групп анионов в растворе. Важное значение имеют реагенты, позволяющие установить присутствие или отсутствие анионов-восстановителей и анионов-окислителей, взаимно исключающих присутствие друг друга. [c.261]

    Сульфид-нон является анионом сероводородной кислоты, представляющей собой раствор газообразного сероводорода в воде. Сероводородная кислота — одна из самых слабых кислот. Соли сероводородной кислоты называются сульфидами. Растворы сульфидов, образованные сильными основаниями, вследствие гидролиза имеют сильнощелочную реакцию. Сульфиды многих металлов труднорастворимы в воде, кислотах и щелочах, что используется для группового разделения катионов по сульфидной классификации. Сульфид-ион является восстановителем он способен окисляться до свободной серы, до сернистого ангидрида или да- [c.81]

    Групповое разделение продуктов ядерного расщепления на анионите в оксалатной форме [1780]. [c.310]

    В повседневной работе химику-аналитику заводской лаборатории иногда необходимо быстро решить вопрос о возможности анализа представленной ему пробы необычного состава. В таких случаях будут полезны сведения о групповом разделении элементов, маскирующих реагентах для металлов и некоторых анионов, а также краткая характеристика наиболее распространенных фотометрических методов определения металлов. [c.5]


    Как показал Уилкинс [121 ], простое групповое разделение, пригодное для серийных анализов, может выполняться в разбавленном растворе плавиковой кислоты. Разбавленный фторидный раствор анализируемой пробы пропускают через сильноосновной анионит. После промывания 2,5% раствором плавиковой кислоты компоненты пробы разделяются на две группы. Вытекающий раствор содержит никель, марганец, хром, кобальт и железо, в то время как титан, вольфрам, мо.либден, ниобий и тантал поглощаются анионитом. Элементы, находящиеся в вытекающем растворе, могут быть разделены в солянокислой среде. Элементы, оставшиеся в колонке, элюируют в виде отдельных фракций вначале титан 8М НС1, а затем последовательно остальные элементы хлоридно-фторидными рас-твора ми. [c.356]

    Групповое разделение однозарядных анионов ступенчатым элюированием из сильноосновного анионита дауэкс-2 в ОН-форме [60] [c.389]

    Но практически полного и последовательного разделения анионов на какие-либо группы с помощью этих реагентов не достигнуто. Поэтому групповые реагенты применяют при анализе смеси анионов только в предварительных испытаниях. [c.275]

    Капельный и дробный методы анализа находят в анализе анионов широкое применение. Групповые реагенты — соли серебра и бария и реже соли ртути и свинца, а также смесь солей кальция и бария применяют обычно не для разделения анионов на аналитические группы, а только для обнаружения различных групп анионов в растворе, так как применение этих реагентов не обеспечивает четкого разделения анионов на группы. Важное значение имеют также реагенты, позволяющие установить присутствие или отсутствие анионов-восстановителей или анионов-окислителей, взаимно исключающих присутствие друг друга. [c.296]

    М и более низкой концентрации наиболее сильно. Этот вывод был использован для группового разделения катионов по их заряду [16]. Для анионов этот вывод применить труднее, так как большинство анионов являются остатками слабых кислот. [c.62]

    М. К. Никитин [191] рассмотрел возможность группового разделения элементов в растворах плавиковой кислоты на анионите АВ- 7. После сорбции элементов из [c.65]

    Общепринятой классификации анионов не существует. В настоящем учебнике принято разделение анионов на три аналитические группы по растворимости бариевых и серебряных солей. Как видно из табл. 24, групповыми реагентами при такой классификации служат хлорид бария и нитрат серебра. [c.196]

    Неорганич. К. а. в водных р-рах основан иа ионных реакциях и позволяет обнаруживать элементы в форме катионов или анионов. Соответственно он разделяется на анализ катионов и анализ анионов. В классич, схеме неорганич. К. а., созданной еще в первой половине 19 в., катионы с помощью групповых реагентов разделяют на группы, к-рые, в свою очередь, подразделяются на подгруппы внутри подгрупп возможно непосредственное обнаружение соответственных катионов. Анионы не имеют общеустановленного разделения на группы, хотя и для них предложены схемы группового разделения. [c.251]

    Катионы металлов обычно значительно легче образуют комплексы с неорганическими анионами в органических растворителях, чем в воде. Например, для перевода розового катиона кобальта (II) в голубой анион хлорида кобальта (1Г) необходима 4—5 М хлористоводородная кислота. В растворе с преобладающим содержанием ацетона интенсивное голубое окрашивание в присутствии кобальта (II) образуется в очень разбавленной хлористоводородной кислоте. Таким образом, область применения ионообменного группового разделения существенно расширяется, если его проводить в смеси воды с органическим растворителем. [c.26]

    Описанные в этом разделе групповые реакции проводят в пробирках с 3—5 каплями предварительно подкисленной содовой вытяжки. Можно также использовать для проведения реакций и другие вытяжки, содержащие анионы, вводя необходимые изменения в ход анализа. Здесь следует еще раз подчеркнуть, что ход анализа, разделения, идентификации и т. д. не является чем-то раз и навсегда установленным, возможны другие варианты проведения анализа. При отрицательном эффекте при действии группового реактива можно надежно говорить об отсутствии в растворе соответствующих анионов, в то время как положительный эффект свидетельствует лишь о возможности присутствия данного аниона. Окончательное обнаружение ионов всегда проводят с помощью реакций идентификации. [c.54]

    Ознакомившись с химическими свойствами некоторых анионов, можно перейти к их аналитической классификации, т. е. к разделению изученных анионов на отдельные аналитические группы. Для аналитических групп анионов характерны общие аналитические реакции — окислительно-восстановительные или обменные, т. е. одинаковое отношение к определенному химическому реактиву, называемому в этом случае групповым реактивом. Групповыми реактивами могут служить, например, растворимые соли бария, стронция, серебра, свинца, ртути (I) и (II) и некоторых других металлов, с которыми одни анионы образуют малорастворимые соли, а другие — нет. Групповым реактивом может быть какой-либо окислитель или восстановитель, меняющий окраску в процессе реакции. [c.212]


    Анионы при анализе в основном не мешают обнаружению друг друга, поэтому групповые реакции применяют не для разделения, а для предварительной проверки наличия или отсутствия той или иной группы анионов. [c.204]

    Для установления присутствия анионов нет строго систематического хода анализа, как для катионов. Обнаруживают анионы в отдельных порциях раствора без разделения. В анализе анионов применяют групповые реагенты, но не для разделения их по группам, а лишь для обнаружения группы анионов. Если, например, с помощью группового реагента найдено, что данная группа анионов отсутствует, то в таком случае нет смысла обнаруживать каждый анион. Это значительно упрощает и ускоряет анализ. [c.300]

    Групповые реактивы.в анализе анионов применяются, но не для разделения их по группам, а лишь для обнаружения группы анионов. Если, например, с помощью группового реактива найдено, что данная группа анионов отсутствует, то в та- [c.293]

    К а смесей неметаллов (исключая анализ орг в-в) осуществляют путем идентификации анионов в водных и вод-но-орг средах Анионы не имеют общеустановленного разделения на группы, число к-рых значительно варьирует в разных схемах анализа Обычно анионы классифицируют по признаку растворимости солей (табл 1) и по признаку окислит-восстановит активности (табл 2) Групповые [c.359]

    Своеобразие качественного анализа неорганических соединений связано с очень большим числом определяемых элементов. Разработано несколько схем качественного анализа, которые, независимо от деталей, основаны на переведении вещества в раствор, последовательном разделении смеси посредством осаждения определенных групп ионов и в конечном счете определении отдельных ионов посредством характерных реакций. Во всех схемах определяемые катионы и анионы делятся на аналитические группы, обычно именуемые по групповому реагенту. Группы отделяют друг от друга, пользуясь различной растворимостью их простых или комплексных солей с разными противоионами при различной кислотности среды. [c.450]

    Тот факт, что аниониты не поглощают или очень слабо поглощаю щелочные металлы, используют во многих групповых отделениях щелочных металлов от других элементов. Если следы щелочных металлов присутствуют в пробе, содержащей большие количества других металлов, то анионообменные методы, как правило, менее пригодны, чем катионообменные. Это справедливо, когда щелочные металлы затем определяют титрованием или гравиметрически. Но когда пользуются пламенной фотометрией, то можно применять разделение на анионите, даже если в пробе содержатся следы щелочных металлов. [c.306]

    В противоположность катионам анионы в большинстве случаев не мешают обнаружению друг друга. Поэтому к реакциям отделения анионов приходится прибегать только в сравнительно редких случаях. Чаще же обнаружение анионов ведут дробным методом, т. е. прямо в отдельных порциях исследуемого раствора. В соответствии с этим при анализе анионов групповые реагенты применяются обычно не для разделения групп, а лишь для их обнаружения. Отсутствие в исследуемом растворе какой-либо группы значительно облегчает работу. [c.316]

    В полусистематических методах имеет место разделение анионов на группы с помощью групповых реа ктивов и последующее дробное обнаружение анионов. Это приводит к сокращению числа необходимых последовательных аналитических операций и в конечном итоге упрощает схему анализа смеси анионов. [c.274]

    Последовательность операций п зи систематическом анализе смеси анионов в растворе в общих чертах заютючается в следующем. Bna4aj(e проводятся предварительные испытания, затем дробным методом в отдельных пробах анализируемого раствора открывают некоторые анионы, после чего уже осуществляют разделение анионов с использованием групповых реагентов с последующим озкрытием каждого аниона в разделенных осадках и растворах. [c.497]

    Большим классом адсорбентов являются молекулярные сита (цеолиты) как природного, так и синтетического происхождения. Их общая формула Мз О-АЬОз-п5102-лсНгО (где М — катион щелочных или щелочноземельных металлов). Структурными блоками алюмосиликатных матриц являются анионы [5104]и [А1О4] связанные через атомы кислорода. Избыток отрицательных зарядов компенсируется ионом щелочного или щелочноземельного металла. Диаметр пор в молекулярных ситах определяется размером атома катиона. Сама структура — микропористая и размер пор близок к размерам малых молекул. Поэтому цеолиты пригодны для разделения газов и самых легких углеводородов, а также позволяют осуществлять групповое разделение линейных олефинов от изо- и циклических аналогов. Цеолиты легко поглощают влагу и их свойства сильно изменяются. ч [c.92]

    Для элюирования альдоновых и уроновых кислот первоначально использовали 0,05 М раствор уксуснокислой меди (II) (см. также гл. 22). Альдоновые кислоты образовывали прочные комплексы, которые не сорбировались и, следовательно, легко элюировались. Уроновые кислоты элюировались значительно позднее. Следовательно, условия для группового разделения альдоновых и уроновых кислот и последующего выделения некоторых уроновых кислот являются благоприятными. Однако удовлетворительного разделения достигнуто не было, так как уроновые кислоты окислялись с одновременным образованием закиси меди [42, 43]. По этой причине Ларссон и сотр. [44] в качестве комплексообразующего агента использовали 0,05 М раствор ацетата цинка. Было достигнуто разделение галактоно-вой, молочной, галактуроновой, глюкуроновой, муравьиной и пировиноградной кислот на дауэксе-1 с диаметром частиц 40— 60 мкм, а смесь галактоновой, арабоновой, гликолевой, леву-линовой, глюкуроновой, глиоксиловой и муравьиной кислот хорошо разделялась на анионообменнике даже с более мелкими частицами (13—18 мк). Так как большинство кислот образуют несорбируемые комплексы с ионами Zn , то коэффициенты распределения были значительно ниже, чем в растворах ацетата натрия. Порядок элюирования дан при постоянстве констант комплексных соединений и селективности коэффициентов анионов, не образующих комплексные соединения. Коэффициенты разделения некоторых кислот отличались до некоторой степени на обеих колонках с разными размерами частиц ионообменников [c.171]

    Анионообменная хроматография оснований на смоле дауэкс 1 является исторически первым примером разделения компонентов нуклеиновых кислот на ионитах. К достоинствам этого метода относится высокое разрешение при элюировании буферным раствором постоянного состава (рис. 37.5). Основания разделяют также на DEAE-целлюлозе [64], однако в основном этот анионит применяют для разделения более крупных фрагментов нуклеиновых кислот (моно- и олигонуклеотидов) или для группового разделения оснований при предварительной очистке. [c.44]

    Разделение аминокислот основано на резличии их изоэлек-трических точек. Например, если в растворе находится смесь аминокислот, обладающих основными и кислыми или нейтральными свойствами, то достаточно пропустить такой раствор сначала через катионит, а затем через анионит, чтобы добиться удовлетворительного группового разделения взятых аминокислот. В этих случаях аминокислоты с основными свойствами поглощаются катионитами, причем степень поглощения зависит от pH среды. [c.191]

    Полусистематические методы анализа дают возможность использовать преимущества систематических и дробных методов анализа. Отделение одних.групп анионов от других при помощи групповых реактивов дает возможность отделить мешающие друг другу анионы, а использование дробного метода открывает возможность сократить число последовательных аналитических операций. В этом случае групповые реактивы используются не только для разделения анионов, но и для обнаружения данной группы анионов. [c.96]

    Состав роданидных комплексов кюрия определили Лебедев и Яковлев [489]. Оказалось, что кюрий, так же как и америций, образует только моно- и трироданидные комплексы с константами устойчивости 1,86 и 0,99 соответственно. В концентрированных растворах роданида аммония, вероятно, образуются отрицательно заряженные комплексы. Роданид аммония рекомендуется как элюирующий агент для группового разделения актиноидов и лантаноидов на анионите. [c.364]

    Растворяют образец в воде, а затем в соляной кислоте, как описано выше. При этом в раствор переходят соединения, как показано в табл. IV. —3. Остаток после растворения в кислоте сплавляют с содой и выщелачивают водой, при этом в осадке остаются все катионы, дававшие нерастворимые соли, а анионы в виде натриевых солей переходят в раствор. Отделяют осадок, добавляют в фильтрат азотную кислоту и определяют аиионы, проводя сначала предварительные испытания, а затем систематическим анализом. Как уже упом1ша-лось, при анализе анионов групповые реактивы — хлорид бария и нитрат серебра — используют не для разделения анионов, а для установления присутствующих групп. Дальнейшее определение проводят частными реакциями на анноны. [c.298]

    Применение различных внутрикомплексообразователей для ионообменного разделения америция и кюрия описано Глассом [5К Классическим элюентом является цитрат. Гласс установил, что при комнатной температуре на смоле дауэкс-50 америций и кюрий очень хорошо разделяются 0,1 М тартратом аммония при pH, равном 4 (коэффициент разделения 1,3). Другим элюентом, способным быстро разделить америций и кюрий, является 0,4 М лактат при pH, равном 4,6. Этот реагент используется при температуре 87° С, что значительно ускоряет разделение (в 2—3 раза по сравнению с комнатной температурой). Альфа-оксиизобутират аммония, введенный в практику как элюент Чоппином, Харви и Томпсоном [6], обнаруживает определенные преимущества по сравнению с лактатом или с цитратом. Хотя применение изобутирата значительно облегчает разделение америция и кюрия, оно не годится для эффективного группового разделения актинидов и лантанидов и не заменяет вымывания соляной кислотой. Однако изобутират является эффективным средством для отделения америция от кюрия. В Беркли Томпсон, Харви, Чоппин и их сотрудники [71 отделили кюрий от облученного плутония методом анионного обмена Облученный плутоний при этом растворяли в соляной кислоте и осаждали актинидные и лантанидные элементы в виде нерастворимых фторидов. Затем осадок фторидов растворяли в смеси азотной и борной кислот. Далее аммиаком осаждали гидроокиси и растворяли осадок в смеси соляной кислоты и хлорида лития. Такая обработка приводила к удалению борной кислоты. Затем раствор соляной кислоты и хлорида лития заливали в колонку с анионитом дауэкс-1. Вымывание производили, пропуская через колонку 8,5 М раствор хлорида лития при температуре 87° С. В первую очередь вымывались редкоземельные элементы, за ними—фракция, содержащая кюрий, америций и калифорний плутоний же прочно удер- [c.421]

    Анионы или кислоты, осаждающие большую группу катионов, называют групповыми реактивами. Такими реактивами являются, например, гидроксид щелочного металла NaOH, сероводородная кислота H2S и др. Последовательное применение групповых реактивов позволяет провести количественное разделение сложной смеси катионов на несколько аналитических групп. Применение групповых реактивов упрощает проведение анализа, позволяя разрабатывать универсальные схемы анализа, предусматривающие наличие в пробе самых различных комбинаций элементов. В то же время отсутствие осадка при действии группового реактива говорит об отсутствии в анализируемом растворе целой группы ионов. [c.156]

    Многие реакции в качественном анализе и титриметрическом методе осаждения (аргентометрия, меркурометрия) основаны на образовании мало растворимых соединений ( 19, 21). Повышенная растворимость галогенидов щелочных металлов объясняется ослаблением сил взаимодействия между ионами в кристаллической решетке. С этим связано отсутствие группового реагента на щелочные металлы. Вещества со слоистыми или молекулярными решетками растворяются лучше, чем вещества с решеткой координационной структуры. Это используют в химическом анализе для разделения катионов подгруппы соляной кислоты от катионов подгруппы сероводорода. Катионы серебра и свинца (II) образуют хлориды, имеющие решетки координационной структуры и поэтому менее растворимы. Хлориды СиС и СсЮЦ имеют слоистые решетки и поэтому хорошо растворимы, как и близкий к ним по строению решетки 2пС 2. Растворимость солеи связана также с радиусами их ионов. Соли с большими катионами и малыми анионами хорошо растворимы, а соли с малыми катионами и большими анионами — плохо (Яцимирский). Растворимость вещества зависит от соотношения полярностей растворенного вещества и растворителя. Установлено также, что растворимость солей зависит от их химической природы, например, для гидроокисей, сульфатов, хлоридов, фторидов элементов 1-й и 2-й групп периодической системы  [c.69]

    Хим методы элементного анализа неорг. соединений Основаны на ионных р-циях и позволяют обнаруживать элементы в форме катионов и анионов Для К а катионов используют разл схемы систематич анализа с последоват разделением катионов на группы и подгруппы, внутри к-рых возможна идентификация отдельных элементов Аналит группы обычно именуют по групповому реагенту [c.359]

    Большие возможности открывает путь предварительного перевода составляющих оксидат соединений, содержащих одну или две карбоксильные группы,, в их метиловые эфиры. В частности, предварительно метилированная проба оксидата — продукта направленного окисления октадекана до кислот — подробно исследована по групповому и компонентному составу в результате многоступенчатого разделения, включающего стадии жидкостного хроматографирования на силикагеле, обработки щелочью, экстракции [204]. Учитывая, однако, сложность, длительность и недостаточную изученность такой схемы для исследования оксидатов фракций парафинов, предлагаете) более упрощенная схема разделения и анализа, опробированная на оксидатах Шебекинского химкомбината с различными кислотными числами [205]. Она заключается в том, что из исходной пробы оксидата отгоняют под вакуумом легкокипящую часть, остаток без перевода в метиловые эфиры разделяют, на анионо-обменнике на фракцию парафинов и неомыляемых соединений и фракцию жирных кислот. Легкокипящую часть оксидата, а также извлеченную из слоя анионообменника фракцию парафинов и неомыляемых соединений анализируют по фракционному составу методом газо-жидкостной хроматографии. Фракцию жирных кислот анализируют с помощью методов, применяемых для фракций СЖК (см. разд. 1.3.1.2.5). [c.79]

    При выборе соответствующей формы комплексных соединений с помощью ионообменников возможно провести также групповое отделение нескольких элементов. Кроме уже упомянутых хлорид-ных комплексов, устойчивость которых хорошо коррелирует с концентрацией хлористоводородной кислоты и которые подходят для селективного разделения, процессы ионного обмена могут контролироваться с помощью различных органических комплексообразующих реагентов (лимонная и винная кислоты, ЭДТА и т. д.). Сильноосновные анионообменные колонки, насыщенные комплексными анионами этого типа, пригодны для одновременного выделения различных групп катионов. Колонки с анионами, образующими осадок (хлориды, сульфиды, карбонаты и т. д.), также использовались для разделения некоторых групп катионов. Как следует из приведенных примеров, селективное элюирование пригодно для разделения отдельных ионов. В общем случае на определение примесей спектральными методами не оказывает влияние неполнота отделения мешающего элемента, которая возможна из-за недостаточно благоприятных условий взаимодействия раствора со смолой. Для большинства спектральных методик нет необходимости использовать ионный обмен для полного отделения ионов одного типа, т. е. селективную хроматографию при ионном обмене. Вполне достаточно воспроизводимо концентрировать определенную группу следов примесей или удалять основную часть мешающего элемента. [c.70]

    В отличие от анализа катионов анионы в большинстве случаев открывают дробными реакциями в присутствии других анионов. Поэтому и групповые реактивы AgNOg и Ba lj применяются при анализе анионов не для разделения групп, а только для их обнаружения. Если какая-либо группа отсутствует полностью, ее групповой реактив не дает с анализируемым раствором никакого осадка. Из этого становится ясным, что не имеет смысла делать реакции на отдельные анионы этой группы таким образом, работа значительно облегчается. [c.133]


Смотреть страницы где упоминается термин Групповое разделение анионов: [c.17]    [c.497]    [c.50]   
Ионообменные разделения в аналитической химии (1966) -- [ c.388 ]




ПОИСК





Смотрите так же термины и статьи:

Групповые на анионы

КАО групповые

Разделение на анионитах



© 2025 chem21.info Реклама на сайте