Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматографическое определение аминов

    Хроматографическое определение аминов [c.155]

    При хроматографическом определении углеродного скелета могут проходить все три реакции гидрирование, дегидрирование и гидрогенолиз. Из них наиболее общая реакция — гидрогенолиз. Температура катализатора в этом случае устанавливается 300°С, скорость потока водорода 20 мл/мин, исследуемая проба порядка 20 мкг. При этом происходит разрыв связей в функциональных группах с образованием исходного углеводорода или следующего низшего гомолога. Связи углерод—сера и углерод—галоген (кроме фтора) разрываются и образуется исходный углеводород. Связь углерод—кислород разрывается во вторичных и третичных спиртах, вторичных и третичных эфирах и кетонах. Связь углерод—азот разрывается во вторичных и третичных аминах и амидах. н-Ал-каны, проходя через катализатор, не подвергаются никаким изменениям, так как все связи в их молекулах насыщены. [c.200]


    Методы определения аминов в воде и сточных водах. Амины определяют фотометрическим методом, чувствительность 3—4 мкг/л, ошибка определения 10—15% [7, 11]. Амины в водных растворах в малых концентрациях определяют хроматографическим, колориметрическим и полярографическим методами [0-13, 8]. Индивидуально первичные, вторичные и третичные амины в водных растворах определяют спектрофотометрическим методом с метиловым оранжевым при pH 3—4, чувствительность 0,1 мг/л [9]. [c.23]

    Газохроматографическое определение аминов в водных растворах осложняется их сорбцией большинством газохроматографических насадок, что приводит к появлению хвостов у хроматографических пиков [83]. Хорошие результаты часто дает покрытие твердого носителя кроме жидкой фазы гидроксидом калия [83—85], а также применение тефлона в качестве твердого носителя [86.  [c.386]

    Количество образующихся моноксида и диоксида углерода можно определить химическими или хроматографическими методами. В кислых растворах изонитрилы легко превращаются в муравьиную кислоту и соль амина. Муравьиную кислоту можно определить селективно газохроматографическим методом, а летучий амин отогнать с паром и определить в дистиллате одним из методов, описанных для определения аминов. [c.497]

    Оптимизация режима хроматографии [113] на силикагеле Методика определения в плазме крови [157 Влияние 15 различных аминов — доба- [257 вок к подвижной фазе на величины удерживания и симметрию пиков Роль состава неподвижной и подвиж- [380] ной фаз в симметрии хроматографических пиков Влияние добавок амина в элюент при [210] обращенно-фазовой хроматографии Механизм удерживания Выбор подвижных фаз для разделения [414] на силикагеле, способ экстракции нз плазмы [c.298]

    Необходимость в количественной обработке раствора пробы можно исключить, если для определения меченого производного применять метод обратного изотопного разбавления. Для этого после превращения анализируемого амина в замещенный сульфамид в раствор добавляют известное количество нерадиоактивного производного, много большее количества меченого производного, присутствующего в растворе. Для этого берут минимальное количество нерадиоактивного производного, достаточное для последующего проведения операций очистки. Затем, применяя ионообменные смолы [79] или экстракцию [81], из раствора удаляют избыток реагента, не обращая внимания на небольшие потери анализируемого соединения. После этого образовавшееся производное очищают путем перекристаллизации до получения постоянного значения удельной радиоактивности [81]. Однако более строгим критерием чистоты соединения в данном растворителе является совпадение значений удельной радиоактивности фильтрата и полученного продукта [83]. Хроматографического разделения в таком анализе не требуется, и удельные радиоактивности образовавшегося производного и радиореагента измеряют, используя стандартный метод. Содержание амииа в пробе в этом случае вычисляют по формуле [c.309]


    В то время как амины и аминокислоты, несущие положительный заряд, более прочно удерживаются при более высоких значениях pH, для отрицательно заряженных сорбатов справедливо обратное. Систематические исследования, проведенные на серии N-бензоил-о, L-аминокислот, позволили глубже понять механизм взаимодействия сорбата с белком. Влияние изменения свойств подвижной фазы на величины к VI а демонстрирует рис. 7.10. Во-первых, удерживание в значительной степени возрастает с усилением гидрофобного характера аминокислоты (Ser > А1а> Phe). Во-вторых, увеличение суммарного отрицательного заряда белка с увеличением pH вызывает уменьшение к для всех шести соединений (вследствие ионного взаимодействия). Далее, влияние концентрации буфера можно объяснить усилением адсорбции вследствие ионных взаимодействий при низкой ионной силе. Небольшое, но вполне заметное возрастание к для наиболее сильно удерживаемых сорбатов при высоких концентрациях буфера вероятнее всего является результатом усиления гидрофобных взаимодействий. Поскольку ионные (кулоновские) и гидрофобные взаимодействия по-разному подвержены влиянию ионной силы, то оба эффекта приводят к возникновению минимума в адсорбции сорбата (к ) в определенной точке. И наконец, совершенно очевидно влияние органического растворителя-модификатора он всегда приводит к понижению удерживания сорбата и тем сильнее, чем более гидрофобен сорбат. Влияние pH и ионной силы на удерживание незаряженных соединений невелико, но выражено вполне отчетливо. Оно связано исключительно с изменениями в связывающем центре ХНФ. Добавление пропанола-1 вызывает уменьшение удерживания по сравнению с наблюдаемым у заряженных сорбатов, что свидетельствует о преимущественном вкладе в удерживание гидрофобных взаимодействий. Это подтверждает также наблюдаемое очень большое влияние на удерживание длины цепи алканола-1. Высшие спирты являются значительно более эффективными конкурентами за связывающий центр, а потому вызывают более быстрое элюирование сорбата. Возможность регулирования удерживания путем изменения подвижной фазы, которую демонстрирует схема 7.6, говорит о том, что эту особенность данных хроматографических систем можно использовать в целях оптимизации разделения. [c.135]

    Органические изоцианаты обладают высокой реакционной способностью. Они легко взаимодействуют со многими химическими веществами, быстро разлагаются и полимеризуются [3]. При некоторых исследованиях возникает необходимость избирательного определения малых количеств изоцианатов в присутствии продуктов их разложения, например аминов. Известен ряд методов определения малых количеств органических изоцианатов [4—8]. Среди них можно назвать хроматографические и спектрометрические методы определения. Разработан также фотометрический метод, основанный на омылении изоцианатов до первичных аминов и определении последних реакцией диазотирования и азосочетания са-нафтолом [8, 10, И]. Однако большинство из этих методов не являются избирательными для изоцианатов и пригодны также для определения самих аминов или для суммарного определения изоцианатов и аминов. [c.253]

    Почти во всех случаях в определенной фотометрической реакции может участвовать не одно вещество, а ряд родственных соединений. Аналитические реакции, дающие положительный результат с самыми разнообразными органическими соединениями, встречаются нередко. Например, интенсивно окрашенные азосоединения образуются при взаимодействии солей диазония и с ароматическими аминами, и с фенолами, и с соединениями, содержащими активную метиленовую группу. Другими словами, аналитические реакции на органические соединения в большинстве случаев неспецифичны. Правда, из разных соединений в условиях данной реакции можно получить по-разному окрашенные продукты. Это иногда позволяет отличать одни соединения от других и определять их при взаимном присутствии. Однако в большинстве случаев необходимо предварительное разделение определяемых веществ хроматографическими методами, экстракцией, отгонкой или другими способами. [c.15]

    Хроматографическое определение аминов 4 Определение одноосновных кислот жирного ряда Г2ЛКруговая (радиальная) хроматография па бумаге Пг онообмеиная хроматография. ..... [c.397]

    Одномерная восходящая хроматография на бумаге Хроматографическое определение аминокислот Хроматографическое определение аминов Определение одноосновных кислот жиp ioгo ряда.  [c.415]

    В работе [97] предлагается метод количественного определения аминов, в котором проводят разделение я-иодбензамидов- Ч в жидкой фазе на хроматографической колонке и счетчиком с твердым сцинтиллятором автоматически измеряют распределение радиоактивности вдоль колонки (ср. гл. 1). В работе описано лишь [c.311]

    Что касается применения хроматографического анализа на практике, то заслуживает внимания определение амино кислот утосле превращения их в альдегиды (меюдика описывается ниже см, Аминокислоты , стр. 149). [c.142]

    На Кироваканском химическом заводе санитарная лаборатория совместно с центральной химической лабораторией разработала спектрофотометрические методы анализа мел амина, циану-ровой кислоты и динила в воздухе, хроматографический метод определения аммиака в выхлопных газах. [c.129]


    К. применяют для анализа мн. неорг. (праггически все металлы, галогены, 8 н др.) н орг. в-в (ароматнч. амины, иитро- и нитрозосоединения, фенолы, азокрасителн, алифатич. амиды и др.) определения воды в орг. в-вах установления толщины н анализа металлич. покрытий изучения процессов коррозии исследования кинетики н механизма хим. р-ций (в т. ч. каталитических) определения констант равновесия р-ций установления числа электронов, участвующих в электрохим. и хим. взаимодействиях, и т.д. Кулонометрич. детекторы широко используются в про-точно-инжекционном анализе и хроматографии (см. Детекторы хроматографические). [c.554]

    Замещенные малоновые кислоты можно декарбоксилировать во входном устройстве газового хроматографа и анализировать образующиеся при этом монокарбоновые кислоты методом ГХ [19]. В анализе, описанном в работе [19], температура входного устройства находилась в пределах 190—220 °С, причем максимальную из этих температур использовали при определении дизаме-щенных малоновых кислот. В работе [20] описан чувствительный метод анализа гербицида пиклорам (4-амино-3,5,6-трихлорпико-линовая кислота), в котором применяется пиролитическое декар-боксилирование непосредственно перед хроматографической колонкой при температуре 385 °С с последующим разделением и оп-ределеним продуктов декарбоксилирования. [c.133]

    Хорошим реагентом для определения макроколичеств карбоновых кислот, ангидридов и хлорангидридов методом изотопного разбавления является п-хлоранилин- С1. Для оценки содержания этих соединений в форме анилидов применяли также и некоторые хлор-феноксиуксусные- С1 кислоты. Как правило, анилиды имеют резко выраженную температуру плавления и их можно очищать путем кристаллизации. Многообещающим радиореагентом для анализа меньших количеств веществ является /г-иоданилин- Ч. Образуемые им меченые я-иоданилиды сначала вводят в хроматографическую колонку, а затем счетчиком с твердым сцинтиллятором измеряют распределение радиоактивности вдоль этой колонки. Преимущество первичных ароматических аминов состоит в том, что обычно ангидриды и хлорангидриды карбоновых кислот реагируют с ними количественно в мягких условиях. [c.158]

    По относительной легкости анализа методом ГХ свободные амины можно расположить в следующей последовательности первичные < вторичные < третичные. ГХ-анализ третичных аминов не представляет труда, однако для прямого ГХ-анализа свободных первичных и вторичных аминов применяемые хроматографические носители обычно обрабатывают щелочью для подавления возможной ионизации и силанизируют для уменьшения адсорбции. Из последних примеров таких анализов можно указать следующие определение алифатических аминов и иминов на колонке с насадкой 20% ЮКОН ЬВ-550Х иа носителе хромосорб Р, обработанном 20%-ным спиртовым раствором КОН [25] определение этиламфет-амина на колонке с насадкой 2% карбовакса 20М + 57о КОН или 10% апиезона Ь + 10% КОН на носителе хромосорб О, промытом кислотой и обработанном диметилхлорсиланом [26] определение амфетамина на колонке с насадкой 157о карбовакса 6000 + 5% КОН на носителе хромосорб О, промытом кислотой, силанизированном и предварительно насыщенном эфирным раствором никотина для уменьшения адсорбции [27] определение пиридиновых оснований на колонке с насадкой 1% триэтаноламина+9% полиэтиленгликоля 1000, диоктилсебацината или силико- [c.291]

    Наряду с тем, что метод с применением меченого ЫЭМ дает хорошие результаты в анализе белков, он представляется многообещающим и в определении очень малых количеств несвязанных низкомолекулярных меркаптанов. В нейтральном или слегка кислом растворе с избытком МЭМ соответствующая реакция идет быстро. Так, например, в случае г-цистеина эта реакция является количественной и завершается в пределах 2 мин при pH раствора от 5,4 до 6,6 [25, 36]. Быстро образуются и аддукты тиогликолевой кислоты, меркаптоэтанола, а также 2-амино-4-меркаптомасляной кислоты [26]. В принципе, при анализе низкомолекулярных соединений не требуется количественного гидролиза аддуктов до 5-сук-цинильных производных, однако он может способствовать отделению аддуктов от избытка реагента хроматографическим методом. В результате реакции меркаптана с МЭМ образуется производное, характеризующееся центром (новым) асимметрии, и этот фактор следует принимать во внимание при выборе метода разделения. Скорости реакций зависят от pH раствора, и кроме того, в воде эти реакции идут быстрее, чем в этаноле [36]. Это позволяет предположить, что реакция образования аддукта является скорее ионной, а не свободнорадикальной. С ЫЭМ реагируют также сульфидные, сульфитные и тиосульфатные анионы [37]. [c.355]

    Этот пример наглядно иллюстрирует уже отмеченное отсутствие прямой и однозначной корреляции профиля Хрбматограмм летучих компонентов с ольфактометриче-скими данными. Однако, если хроматографическому разделению предшествует выделение определенных компонентов сложного аромата, сходных по химической при роде, то хроматограммы таких однородных по химическому составу фракций одорантов оказываются Гораздо легче интерпретируемыми и весьма информативными. Так, для разных сортов икры, рыбных и молочных продуктов характерными являются профили хроматограмм выделенных из них смесей аминов, альдегидов или Сернистых соединений [24, 25]. [c.241]

    В водяную баню для нагревания помещают круглодонную трехгорлую колбу с мешалкой и затвором, обратным холодильником с хлоркальциевой трубкой, термометром. Вносят 37 мл С180зН, охлаждают до 15—18°С и при размешивании небольшими порциями добавляют 18 г сухого 1-амино-4-гидрокси-2-фе-ноксиантрахинона с такой скоростью, чтобы температура массы не поднималась выше 30°С. Содержимое колбы нагревают до 45—50 °С и при этой температуре выдерживают 6 ч. После окончания выдержки отбирают пробу для определения конца сульфо-хлорирования. Для этого I—2 капли реакционной массы добавляют в пробирку к 2 мл анилина и хорошо размешивают стеклянной палочкой. Из хроматографической бумаги вырезают круг диаметром 200 мм, нз центра проводят окружность радиусом 20 мм (линия старта). В центре вырезают круг диаметром 10 мм. Бумагу пропитывают 10 % этанольным раствором 1-бромнафта-лина и сушат в вытяжном шкафу при комнатной температуре 10— 15 мин. [c.109]

    Анализ. Методы анализа белковых макромолекул селективны и осуществляются в зависимости от того, какая структура является объектом исследования, и начинаются с определения аминокислотного состава. Для этого необходимо провести полный гидролиз пептидных связей и получить смесь, состоящую из отдельных аминокислот. Гидролиз проводят при помощи 6 М соляной кислоты при кипячении в течение 24 ч. Так как для гидролиза пептидных связей изолейцина и валина этого может быть недостаточно, проводят контрольный 48- и 72-часовой гидролиз. Некоторые аминокислоты, например триптофан, при кислотном гидролизе разрушаются, поэтому для их идентификации используют гидролиз при помощи метансульфоновой кислоты в присутствии триптамина. Для определения цистеина белок окисляют надмуравьиной кислотой, при этом цистеин превращается в цистеиновую кислоту, которую затем анализируют. Вьщеление и идентификацию аминокислот проводят при помощи аминокислотных анализаторов, принцип действия которых основан на хроматографическом разделении белкового гидролизата на сульфополистирольных катионитах, В основе количественного определения той или иной аминокислоты лежит цветная реакция с нингидрином, однако более перспективным следует считать метод, при котором аминокислоты модифицируют в производные, поглощающие свет в видимом диапазоне. Разделение смеси аминокислот проводят при помощи высокоэффективной жидкостной хроматографии, а само определение — спектрофотометрически. Следующим этапом является определение концевых аминных и карбоксильных [c.40]

    При разделении аминов и аммиака на порапаках Р и Р не удается добиться удовлетворительной формы пиков [146]. На полимерах, модифицированных путем нанесения таких жидких фаз, как тетраэтиленпентамин или полиэтиленимин, возможно определение воды. Вытеснение влаги и свободного аммиака из расплавленного нитрита натрия продуванием воздуха и последующий газохроматографический анализ позволяют быстро определить pH и влажность этого материала [37 ]. Обермиллер и Шарлье [218] установили, что на колонках с порапаком Q (50—80 меш) возможен анализ смеси постоянных газов с оксидом углерода и газами, содержащими серу. Эти авторы использовали хроматографическую систему с двумя колонками. На колонке длиной 2 м с внутренним диаметром 1,2 мм при 75 °С разделяли СО , НаЗ, 50а и Н2О ( горячая колонка ), а на колонке длиной 10 м при —65 °С — Аг, Оа, N2 и СО. Полный анализ такой смеси осуществляли с помощью переносного хроматографа с двумя колонками и детектором по теплопроводности на термисторах. Для создания оптимальных условий отделения ЗОа путем соответствующего кондиционирования колонки в газ-носитель (гелий) добавляли ЗОа в концентрации 100 млн . [c.309]

    Опубликованы данные [107] по хроматографическому качественному анализу найлонов 66, 6 и 11. Образец гидролизовали серной кислотой с образованием твердой фракции, состоявшей из адипиновой кислоты и сульфата аминоундекановой кислоты, и жидкой фракции, состоявшей из сульфатов гексаметилендиамина и аминокапроновой кислоты. Твердую фракцию растворяли в 98%-ной муравьиной кислоте и хроматографировали на бумаге ватман № 1. Жидкую фракцию пропускали через анионообменную смолу и проявляли смесью пропилового спирта, концентрированного водного раствора аммиака и воды (6 3 1). Бумажные хроматограммы сушили на воздухе, прогревали 15 мин при 105° и обрызгивали нингидрином для проявления аминов и смесью анилина и ксилола для определения кислых продуктов. [c.336]


Смотреть страницы где упоминается термин Хроматографическое определение аминов: [c.200]    [c.458]    [c.131]    [c.163]    [c.356]    [c.4]    [c.302]    [c.176]    [c.480]    [c.217]    [c.101]    [c.127]    [c.291]    [c.198]    [c.142]    [c.276]   
Смотреть главы в:

Практические работы по органической химии Выпуск 1 и 2 -> Хроматографическое определение аминов




ПОИСК





Смотрите так же термины и статьи:

Хроматографический метод определения 1,6-гексаметилен ди амина в воде



© 2025 chem21.info Реклама на сайте