Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение кислорода из перекиси водорода

    Перекись водорода представляет собой сильный окислитель, причем продуктами ее разложения являются только кислород и вода. Поэтому перекись водорода широко применяется в тех случаях, когда нежелательно загрязнение веществ, получаемых при окислении продуктами восстановления окислителя. Растворы перекиси водорода используют для беления дорогих тканей, мехов, масел, бумажной массы, в медицине и тонкой химической технологии. Высококонцентрированная перекись водорода используется для получения паро-газовой смеси в различных реактивных устройствах. [c.354]


    В патентной литературе имеется также описание некаталитического (термического) окисления низших газообразных парафинов, которое проводили при недостатке кислорода в реакторе из металла, устойчивого к действию высоких температур и продуктов реакции [7]. Температура процесса равнялась 400—500°, причем температуру поверхности реактора поддерживали на уровне ниже 200°. Полученные гидроперекиси имели такое же строение, что и гидроперекиси, обнаруженные в только что описанном опыте, однако незначительные изменения в условиях реакции приводили к образованию водного раствора перекиси водорода как основного продукта из числа веществ, содержавших активный кислород. Так, например, при работе со смесью из 90% пропана и 10% кислорода с продолжительностью реакции 5 сек. (температура в реакторе 470°, температура стенки 150°) основным кислородсодержащим продуктом была перекись водорода, полученная в виде 3—4%-ного водного раствора [8]. Этот способ получения перекиси водорода, по-видимому, уступает место прямому окислению изопропилового спирта, в результате которого тоже образуется перекись водорода (см. гл. 8, стр. 150). [c.71]

    Предлагая последовательное протекание реакции по уравнению (2), можно построить кривую ионизации кислорода до перекиси водорода делением пополам величин исправленных токов при каждом значении потенциала (рис. 7, кривая 1). Анализ полученных результатов приводит к следующим выводам. Так как зависимости стационарного потенциала серебряного электрода в щелочном растворе от парциального давления кислорода и от концентрации перекиси водорода хорошо согласуются с термодинамическими зависимостями, то можно заключить, что этот потенциал определяется обратимым протеканием реакции кислород — перекись водорода. [c.148]

    Гидроксилирование. Ароматические соединения моя но перевести в производные фенольного типа путем воздействия на водные растворы радиации или реактива Фептона (перекись водорода и сульфат двухвалентного железа) [132]. Для получения хороших выходов при гпдро-ксилированип путем облучения Х-лучами водных растворов важно присутствие кислорода. Представляется вероятным, что ити реакции протекают через стадию образования гидроксильного свободного радикала с последующей атакой последнего па ароматическое кольцо. Типичные результаты суммированы в табл. 18. [c.467]


    Рассмотрим теперь результаты электрохимических исследований пористых серебряных электродов. Из полученных данных следует, что при всех потенциалах отрицательнее 0,9 в при стационарном режиме работы электродов и = 4. В случае кислородного электрода наблюдается заметная зависимость электрохимической активности при постоянном перепаде от парциального давления кислорода. Парциальное давление кислорода изменялось в интервале 0,9—2,5 атм. После введения поправки м упругость паров воды [85] ток оказывается линейной функцией У Ро, (рис. 222) независимо от потенциала и перепада давления, что свидетельствует о первом порядке реакции ионизации молекулярного кислорода. Перекись водорода, которая, согласно опытам на дисковом вращаюш,емся электроде [86], образуется в качестве промежуточного продукта при Ф =0,8 в, в случае пористого электрода не успевает отводиться в объем электролита и целиком восстанавливается на электроде. В соответствии с данными работы Ц84], где ионизация кислорода исследовалась на гладких электродах из сплава Ag — М , можно предполагать, что замедленной стадией является присоединение первого электрона к молекуле кислорода. [c.320]

    Перекись бария используется для отбелки шелка, кости, соломы, перьев и т. п., кроме того, в большом масштабе применяется для получения перекиси водорода, а также в качестве антисептика в медицине и других областях. Ранее она употреблялась для технического получения кислорода (способ Брина). [c.259]

    Очень концентрированные (80% и выше) водные растворы Н2О2 находят применение в качестве источников энергии и самостоятельно (с помощью катализаторов быстрого разложения Н2О2 из одного литра жидкой перекиси водорода можно получить около 5000 л нагретой до 700 °С смеси кислорода с водяным паром), и как окислитель реактивных топлив. Перекись водорода применяется также как окислитель в химических производствах, как исходное сырье для получения многих перекисных соединений, инициатор полимеризационных процессов, при изготовлении некоторых пористых изделий. для искусственного старения вин, крашения волос, вывода пятен и т. д. [c.152]

    Изображенный в верхней части схемы бесхлорный метод основан на окислительно-восстановительных реакциях. Для его осуществления нужен только пропилен, кислород воздуха и перекись водорода. Экономичность этого способа целиком определяется стоимостью получения перекиси водорода. [c.163]

    Для работы требуется Аппарат Киппа для получения двуокиси углерода или кислорода (с двумя промывными склянками). — Приборы (см. рис. 21). — Бутыли с водой. — Цилиндры мерные емк. от 250 до 500 мл. — Термометр комнатный — Колба плоскодонная емк. 250 мл сухая с пробкой и резиновым кольцом. — Барометр. — Ампулы стеклянные. — Мрамор кусковой. — Катализатор из двуокиси марганца. — Соляная кислота (1 6). — Серная кислота конц. — Перекись водорода, 3%-ный раствор. — Гидрокарбонат натрия, насыщенный раствор. — Хлороформ. — Четыреххлористый углерод. Линейка металлическая. [c.31]

    Наличие двух электрохимических процессов образования перекиси водорода открывает принципиальную возможность непосредственного ее получения как на катоде, так и на аноде. Действительно, если ртутный или амальгамированный медный, или серебряный катод, погруженный в кислоту, омывать газообразным кислородом, то на нем образуется перекись водорода по реакции (27). Стандартный потенциал этой реакции ф°=+0,69 в. [c.355]

    Медь даже в небольших количествах очень сильно мешает определению молибдена. (717, 1117]. Для него получают слишком низкие результаты. Медленная реакция аутоокисления пятивалентного молибдена кислородом воздуха резко ускоряется в присутствии меди как катализатора. Предполагается, что при этой реакции образуется перекись водорода в качестве промежуточного продукта. Когда раствор соединения пятивалентного молибдена, полученного в ртутном редукторе, фильтруют в присутствии воздуха, то происходит окисление следовых количеств ИОНОВ одновалентной меди кислородом с образованием перекиси водорода, которая затем окисляет некоторое количество пятивалентного молибдена. Вследствие протекания этой реакции для молибдена получают низкие результаты. В то же время при определенных условиях (1Л НС1) пятивалентный молибден спо собен восстанавливать медь до одновалентного состояния. [c.191]

    Соединения трехвалентного кобальта более прочны. Общий метод их получения сводится к окислению растворов солей двухвалентного кобальта в присутствии аммонийной соли и аммиака. В качестве окислителей применяют кислород воздуха, перекись водорода [5], иод [6], перманганат калия [7], двуокись свинца [8] и др. [c.6]


    Интерес представляет также способ, согласно которому для получения перекисных соединений применяется как катод-ний, так и анодный процесс. Благодаря двойному использованию тока, количество электричества, затрачиваемое на получение определенного количества активного кислорода, умень-и1астся примерно вдвое, с большим эффектом используется аппаратура, однако напряжение на ванне при этом также возрастает вдвое, а именно до 3,7 е. В анодное пространство электролизера, разделешюю керамиковой диафрагмой, вводят раствор сульфата аммония с серной кислотой, в катодное — 0,П%-ную серную кислоту, через которую пропускают сильный ток кислорода. При анодной плотности тока 0,02 а/см и катодной 0,04 а см в анодном пространстве с платиновым анодом получают персульфат аммония, в катодном — с амальгамированным золотым катодом - - перекись водорода. [c.145]

    Перекись водорода разлагается гораздо легче, образуя в качестве конечных продуктов воду и кислород. Спектроскопические данные указывают на образование гидроксильных радикалов НО — ОН -j- НО -j- ОН К Эта точка зрения подтверждается тем фактом, что фоторазложение перекиси водорода, сенсибилизированное ртутью, может быть использовано для получения гликолей из олефинов (гл. XI, стр. 268—9). [c.127]

    Краусу удалось получить соедииения кремния, содержащие активный кислород. Он смешивал свежеприготопленный силикат натрия с 30%-ной перекисью водорода и подвергай, смесь вакуум-дестилляции. При этом удалялась только пода, ио не перекись водорода. Полученные кристаллы име.чи, примерно, следующий состав NasSiOa HgO 2Н202- [c.405]

    Превращение, которое можно рассматривать как ферментативный вариант этой реакции, ускоряется лактатоксигеназой — гексамерным флавопротеидом с мол. весом 350 000, полученным из My oba terium. В анаэробных условиях фермент продуцирует пируват путем простого дегидрирования [142]. Однако в присутствии кислорода образуется уксусная кислота, причем один из атомов кислорода карбоксильной группы происходит из О2. Поскольку перекись водорода — обычный продукт, образующийся из кислорода под действием флавопротеидов, возможно, что в случае лактатоксигеназы образующаяся перекись водорода непосредственно окисляет пируват в соответствии с уравнением (8-67), [c.273]

    Остаток после отгонки эфира в вакууме от продукта первого опыта (окисление эфира при 50° без облучения) и откачки в течение 1,5 часа при 30° и 1 мм рт. ст. по виду не отличался от соответствующих продуктов, получавшихся нами при окислении эфира в прежних условиях (легкой перекиси в дестиллате не получено). / = 1,055 По = 1,4380 мол. вес, определенный криоскопическим путем в бензоле, —169 содержание активного кислорода отвечает расходу 38,3 мл 0,1 N раствора РеС1з на миллимоль (станнометрическим методом). Он легко растворяется в органических растворителях и смешивается с водой, гидролитически разлагаясь ею на перекись водорода и ацетон (количественно определены и охарактеризованы как выше Н2О2—качественной реакцией с хромовой кислотой, ацетон —температурой плавления п-нитрофенилгидразона и пробой смешения с синтетически -полученным л-нитрофенилгидразоном ацетона). [c.138]

    Легкая окисляемость гидразобензола до азобензола (и возможность превращения азобензола обратно в гидразо) может быть использована для получения перекиси водорода. При действии кислорода на бензольный раствор гидразобензола может б1йть получена с почти количественным выходам высокопроцентная (94%) перекись водорода по реакции  [c.141]

    В отличие от реакции окисления изобутана, направленной п сторону образования перекисей, было найдено, что окисление и юпана и бутана (отношение углеводорода к кислороду 9 1, температура около 450°С, время контакта — 4 сек) приводит к получению смеси продуктов, содержащей органические перекиси, перекись водорода, альдегиды, спирты, окись и двуокись углерода, воду, олефины и водород . Органические перекиси в этом случае состоят, вероятнее всего, йз оксигидроперекисей и диоксиперекисей, образующихся в результате взаимодействия 1 рисутствующих в окисляемой среде альдегидов (например, формальдегида) и перекиси водорода. В более поздней работе описан способ превращения этана в гидроперекись путем окисления при 10—80° С под действием ультрафиолетового излучения в присутствии паров ртути, цинка или кадмия в качестве [c.20]

    В гл. V упоминалось о низкотемпературном фотосенснбилн-зированиом окислении изопропилового спирта в 2-гидроперокси-пропанол-2 >2 . Это соединение оказалось устойчивым при перегонке, а при обработке водой давало ацетон и перекись водорода. В литературе приведены данные о разработанном процессе жидкофазного окисления изопропилового спирта с целью получения перекиси водорода и ацетона. Несмотря на то, что гидроперекись в этом процессе не была выделена, ее промежуточное образование, по-видимому, не вызывает сомнений. Этим методом одна из фирм собиралась производитьдо 15 000 г перекиси водорода в год, главным образом, для окисления акролеина при получении синтетического глицерина. Согласно патентным данным, перекись водорода получается также и при окислении других низших вторичных спиртов. Окисление производится при температуре от 70 до 160° С под давлением 2,5 ат кислородом, циркулирующим через реакционную смесь. При этом в реакционном аппарате не должно содержаться веществ, способных катализировать разложение перекиси водорода [c.446]

    Основные научные работы посвящены преимущественно неорганической химии. Исследования проводил главным образом совместно с Ж. Л. Гей-Люссаком. Вместе они разработали (1808) способы получения калия и натрия восстановлением гидроокисей посредством нагревания с железными стружками. Совместно с Гей-Люссаком получил (1808) свободный бор из борного ангидрида. Изучнл (1809) реакцию взаимодействия хлора с водородом. Доказал (1810), что калт"1, натрий, иод и хлор — элементы и что хлористо-и иодистоводородная кислоты не содержат кислорода. Открыл (1818) перекись водорода и получил ее в чистом виде. Открыл [c.486]

    Кольтгоф и Йордан [105] предположили, что перекись водорода реагирует с анион-радикалом Of (образующимся при переходе электрона на молекулу Ог), причем регенерируется кислород. В таком случае должно было бы наблюдаться повышение первой волны кислорода. Возможность осуществления этого механизма побудила Корнелиссена и Гирста [106] опубликовать краткое сообщение, посвященное кинетике восстановления кислорода в таких растворах индифферентных электролитов, где величина фг при потенциалах первой волны кислорода имеет достаточно большое положительное значение. Действительно, и в отсутствие перекиси водорода в объеме раствора наблюдалось повышение первой волны кислорода, что было объяснено увеличением концентрации Oi на внешней плоскости под влиянием положительного фг-потенциала. Однако полученные в работе [106] результаты были объяснены Кольтгофом и Изуцу [107] перемешиванием раствора и наличием следов летучих загрязнений в солях тетраалкиламмония. Эти авторы подвергли также сомнению объяснение, данное ранее Кольтгофом [c.249]

    Эти методы используются для приготовления пористых эластомеров и термопластов, для которых получающиеся при разложении продукты не приносят вреда. Используется большое число порообразующих веществ, из которых наиболее распространены бикарбонаты натрия и аммония, нитрат аммония, карбонат кальция, диазопроизводные и диизоцианаты. Предложен в качестве порообразующего агента насыщенный газом активированный угольВ процессе Телейли для получения пористой резины источником газа служит перекись водорода, разлагающаяся с выделением кислорода под действием дрожжевого катализатора В любом случае порообразующий материал подмешивается в латекс до коагуляции или в эластомерную массу до вулканизации, причем материал должен быть равномерно распределен по всей пластической массе прежде, чем произойдет выделение газа. [c.92]

    Для того, чтобы окончательно исключить промежуточное образование перекиси водорода при получении персульфата, мы применили метод изотопного разбавления. К электролиту добавлялась перекись водорода с другим изотопным составом кислорода, чем в воде. Если в ходе электролиза образуется перекись водорода из воды, то она должна разбавлять добавленную и изменять ее изотопный состав в направлении приближения к изотопному составу воды. Такое изменение не было обнаружено, несмотря на то, что количество образующегося персульфата во много раз превышало количество перекиси водорода, введенной в электролит. С другой стороны, было найдено, что при добавлении к раствору сульфата 20 г л Н2О2, образование персульфата подавляется и анодный -кислород вначале имеет тот же изотопный состав, как кислород добавлен- [c.18]

    Несмотря на то что кислород воздуха обычно применяют для получения комплексов Со(1И), могут быть использованы и другие окислители. Многие из них в состоянии окислить Со(П) в Со(1И) в присутствии подходящих лигандов однако не все они удобны для применения. Такие окислители, как перманганат калия и бихромат калия, вводят в реакционную смесь ионы, трудно отделимые от продуктов реакции. Другие же окислители, например кислород и перекись водорода, не вводят в реакционную смесь посторонних ионов металлов. Подходящими окислителями являются также те, продукты восстановления которых не растворимы в воде и их можно отделить фильтровяние.м. Примерами являются РЬОз, который восстанавливается до РЬ , отделяемый в виде нерастворимого РЬС1г, и ЗеОо, который дает при восстановлении нерастворимый селен. [c.102]

    Процесс протекает в жидкой и в паровой фазе в качестве инициатора применяют перекись водорода или какую-нибудь другую перекись, дающую щелочную реакцию. Жидкофазное окисление нужно вести так, чтобы между количествами абсорбированного кислорода и полученной перекисью водорода поддерживалось равновесие. Процесс идет непрерывно его осуществляют при температурах 100—105° С и давлении 2—3 ат, несколько большем, чем необходимо для поддержания изопропилового спирта в жидком состоянии. В этих условиях получается перекись водорода концентрацией 15—25% вес. В качестве стабилизатора перекиси водорода применяется метастанат натрия или ацетанилид. В качестве сырья применяется технический изопропиловый спирт (азеотропная смесь, содержащая 88% спирта и 12% воды) и кислород концентрацией не менее 95%. [c.450]

    После вакуумной разгонки осталась бесцветная прозрачная жидкость, которая откачивалась в течение 1,5 часа при 30° С и 1 мм рт. ст. (перекиси в дестиллате не было получено) и непосредственно после этого исследовалась (выход 5,06 г). Она интенсивно выделяла иод из раствора KJ. Коэфициент рефракции ее оказался тем же, что у двухатомной перекиси изопропилового эфира (По = 1,4368), остальные же физические, а также химические свойства резко отличались. Она обладала меньшим удельным весом ( 4 = 0,947) и молекулярным весом (при криоскопическом определении в бензоле М = 149), значительно более низким содержанием активного кислорода (10,5 мл 0,1 N раствора РеС1з на 0,1 г или 15,8мл на миллимоль вещества), не смешивалась с водой и в пламени горелки сгорала спокойно, без вспышки, сначала синеватым, затем коптящим пламенем. Полученная жидкость давала положительную реакцию на перекись водорода с хромовой кислотой, что связано, повидимому, со способностью ее легко отщеплять перекись водорода. [c.138]


Смотреть страницы где упоминается термин Получение кислорода из перекиси водорода: [c.37]    [c.38]    [c.25]    [c.140]    [c.214]    [c.291]    [c.292]    [c.305]    [c.307]    [c.321]    [c.379]    [c.382]    [c.401]    [c.409]    [c.81]    [c.381]    [c.640]    [c.141]    [c.81]    [c.388]    [c.63]   
Смотреть главы в:

Лекционные опыты по общей химии -> Получение кислорода из перекиси водорода




ПОИСК





Смотрите так же термины и статьи:

БГК и кислорода и водорода

Водород получение

Водорода ион перекисью водорода

Водорода перекись

Кислород перекиси водорода

Кислород получение

Кислород. Водород. Перекись водорода

Перекиси, получение



© 2024 chem21.info Реклама на сайте