Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Некоторые примеры реакций присоединения

    Некоторые примеры реакций присоединения [c.24]

    Раскрытие кольца циклопропана наблюдается также в некоторых ионных реакциях присоединения. Так, при действии брома, галогеноводородов и серной кислоты циклопропан дает соответственно 1,3-дибромциклопропан, н-пропилгалогенид и н-пропанол. Простые производные циклобутана так легко не вступают в эти реакции. Примеры электрофильного присоединения брома к циклопропанам даны ниже (уравнения 49—51). [c.160]


    В связи с обсуждением механизма, реакционной способности и стереохимии были рассмотрены только некоторые примеры реакций присоединения ненасыщенных соединений. На самом деле, исходя из олефинов, можно получить громадное количество самых разнообразных органических веществ. Ниже мы рассмотрим важнейшие реакции присоединения и их практическое применение в различных органических синтезах. [c.43]

    В качестве иллюстрации к изло кенному выше описываем некоторые примеры реакций присоединения, замещения и теломеризации олефинов в присутствии карбонилов металлов или коллоидного железа. [c.443]

    Молекулы могут присоединять электроны, образуя отрицательные ионы. Захват электронов — резонансный процесс. При этом, если присоединяется электрон с энергией, превышающей тепловую, всегда происходит диссоциация. Однако она может произойти и в том случае, если захваченный электрон имеет тепловую энергию. Вот некоторые примеры реакций присоединения электрона с последующей диссоциацией  [c.146]

    Бисульфиты медленно присоединяются к олефинам в холодном разбавленном растворе [12]. Существенное значение для реакции имеет присутствие окисляющего агента, например кислорода или нитрита. Это обстоятельство позволило предположить, что можно дать лучшее объяснение механизму реакции, применяя теорию свободных радикалов [12г], так как бисульфит можно превратить в свободный радикал действием окисляющего агента. Скорость присоединения в значительной степени зависит от концентрации водородных ионов. Этилен не реагирует с бисульфитом аммония при значении pH раствора, равнОм 4,8, тогда как для значения pH 5,9 реакция протекает с заметной скоростью. При взаимодействии бисульфита с пропиленом максимум скорости достиг ается в интервале значений pH от 5,1 до 6,1. Бисульфит присоединяется также к изобутилену, триметилэтилену, циклогексену, пинену, дипентену и стиролу. В тех случаях, когда установлено строение продуктов реакции, присоединение происходит не по правилу Марковникова. Так, из пропилена, изобутилепа и стирола получены соответственно соли пропан-1-сульфокислоты, 2-метилпро-пан-1-сульфокислоты и 1-фенилэтан-2-сульфокислоты [12г, е], В последнем примере основным продуктом реакции является 1-фенил-1-оксиэтан-2-сульфокислота в присутствии кислорода, но не других окисляющих агентов, образуется также некоторое количество 1-фенилэтилен-2-сульфокислоты [12е]. [c.107]

    Некоторые примеры реакций альдольного присоединения приведены ниже. [c.192]

    Приведем еще некоторые примеры реакций нуклеофильного присоединения. [c.174]

    Химия возбужденных частиц может значительно отличаться от химии частиц, находящихся в основном состоянии. Как мы уже указывали в гл. 1, эти различия могут происходить как в результате избытка энергии, присущего возбужденным частицам, так и за счет частичной перестройки их электронных оболочек. Оба этих фактора отчетливо проявляются в процессах внутри- и межмолекулярного переноса энергии, которые обсуждались в последних двух главах. Очевидной предпосылкой для переноса энергии является ее избыток, а ограничения, накладываемые на состояния, между которыми происходит перенос энергии, зависят от строения электронных оболочек молекул в различных состояниях. В настоящей главе мы рассмотрим процессы, включающие возбужденные частицы, которые приводят к химической реакции (т. е. в которой реагенты и продукты различаются не по возбужденным состояниям, а по химической природе). Эти химические процессы могут быть как внутри-, так и межмолекулярными, подобно физическим процессам переноса энергии. Первый класс реакций включает внутримолекулярное восстановление, присоединение и различные типы изомеризации к межмолекулярным реакциям возбужденных частиц относятся реакции присоединения невозбужденных молекул абсорбированного вещества или (в случае растворов) растворителя. Фотохимические реакции могут быть наилучшим способом синтеза множества важных, интересных или полезных соединений некоторые примеры приведены в разд. 8.10. Мы опишем здесь ряд принципов, лежащих в основе реакционной способности возбужденных частиц, и представим небольшую подборку реакций, иллюстрирующих наиболее важные типы известных процессов. [c.148]


    Высокая селективность определяется электронными и простран ственными эффектами, действующими в одном направлении в реакции присоединения. Ниже приведены некоторые примеры систем [63а], для которых была определена региоселективность присоединения в реакциях гидроборирования. [c.95]

    Многие реакции этиниловых эфиров с участием тройной связи не могут однозначно рассматриваться как электрофиль-ное, нуклеофильное или свободнорадикальное присоединение. Примерами являются некоторые реакции присоединения, замыкания цикла и полимеризации. [c.179]

    Даже эта схема чрезмерно упрощена, но детали механизма мы не будем обсуждать, хотя можно сделать широкое обобщение, что присоединение к алкенам несколько ближе к истинным реакциям карбенов, в то время как в реакциях с карбонильными соединениями обычно соблюдается последовательность присоединение - элиминирование. Некоторые примеры, в которых литийорганические интермедиаты [1] были получены и уловлены при низких температурах, были описаны раньше (см., например, с. 83, 84, 95). [c.164]

    Два типа реакций, рассмотренных выше, с точки зрения механизма представляют собой крайние случаи, относительно которых существует установившаяся точка зрения. В большом числе других примеров электрофильного присоединения вопрос об участии мостиковых интермедиатов в реакции зачастую является спорным. Рассмотрим примеры некоторых наиболее важных реакций этого типа. [c.201]

    Катализаторы межфазного переноса особенно широко используют в реакциях нуклеофильного замещения и присоединения, значительно в меньшей степенн — в реакциях элиминн-рованпя. Описаны отдельные примеры использования этих катализаторов в процессах изомеризации. Ниже последовательно рассмотрено применение межфазного катализа в нуклеофильных реакциях замещения с участием неорганических и органических анионов, в нуклеофильных реакциях присоединения органических анионов по кратным связям (включая последующие превраш,ения продуктов присоединения, например элиминирование и циклизацию), в реакциях присоединеиия дигалогенкарбенов по простым (внедрение) н кратным связям, в реакциях элимнпнрования и некоторых других превращениях. [c.50]

    Высокая реакционная способность связей свинец—кислород находит практическое использование в реакциях протолиза и присоединения. Некоторые примеры взаимодействия этих соединеннй с донорами протонов, включая сравнительно слабые кислоты, приведены ниже (схемы 345 -347). Реакции присоединения возможны для соединении с полярными двойными связями в этих процессах [c.212]

    Как следует из перечисленных примеров, ароматичность бензола заключается прежде всего в его специфической реакционной способности инертность в реакциях присоединения, склонность к реакциям замещения, устойчивость к окислению и нагреванию. Термин же ароматический имеет историческое происхождение. Бензол и его гомологи обладают специфическим запахом, а, кроме того, некоторые их производные были выделены из растительного сырья, также обладающего своеобразным запахом. Основным же источником ароматических углеводородов была и остается глубокая переработка нефти и каменного угля. [c.381]

    Результаты изучения реакции этилена с дейтерием на родии, нанесенном на окись алюминия [31], а также некоторые примеры распределений, рассчитанных по вышеуказанному методу, приведены в табл. 19. Содержание дейтерированных этиленов в начальных продуктах реакции возрастает от 30% при—18° до 75% при 110°. В противоположность реакции на палладии главным продуктом реакции на родии является этан-йг, причем при всех используемых температурах, кроме наименьшей, наблюдался значительный водородный обмен. Примененные при расчетах параметры указывают на сильное влияние температуры на вероятность десорбции этилена, которая повышается от 25% при —18° до 62% при 110°. Вероятность же обратного превращения в алкильный радикал относительно мало зависит от температуры. Другим отличием от реакции на палладии является то, что на родии вероятность присоединения дейтерия на стадии гидрогенизации больше, [c.399]

    Классическим примером присоединения против правила Марковникова является сиободнорадикальноо присоединение бромистого водорода к алкену известны также н некоторые ионные реакции присоединения против этого правила (разд. 8,6 и задачи 41, 42). [c.347]

    Присоедиисппе по двойным и тройным углерод-азотным связям (включая формально двойные связи ароматических азотсодержащих гетероциклов) является общей реакцией литийорганических соединений некоторые примеры реакций этого тина приведены в табл. 15.1.3. Следует отметить, что присоединение может осложняться другими (параллельными или последовательными) реакциями, которые могут приводить как к нежелательным, так и к полезным продуктам. Одна из таких реакций — замещение протона, находящегося в а-иоложении к циано- или имиио-группе (металлирование), рассматривалась выше (см. табл. [c.18]


    Отмеченную закономерность можно наблюдать не только на примере реакций присоединения по двойной связи, но и рассматривая некоторые другие реакции, например полимеризацию алкенов и фторалкенов, диме-ризацию производных этилена в производные циклобутана, изомеризацию бутадиена-1,3 и гексафторбутадиена-1,3 в соответствующие циклобутены и т. д. [c.142]

    Соответствующий подбор параметров позволяет осуществить реакцию присоединения. Длину волны света следует подобрать так, чтобы она включала полосу поглощения олефинового или ацетиленового соединения и, предпочтительно, чтобы не включала полосу поглощения продукта реакции по той причине, что желательно, чтобы субстрат в противоположность конечному продукту был достаточно возбужденным, чтобы вступать в реакцию. Лучше всего работать при наименьших длинах волн света, добиваться возбуждения правильным подбором фильтров, даже если это и приведет к значительному увеличению времени реакции. Другим средством инициирования реакции является использование сенсибилизаторов, но они иногда изменяют направление реакции. В основном сенсибилизатор это агент для переноса энергии света. Он активируется до синглетного или триплетного состояния и именно в последнем состоянии активирует субстрат в результате интеркомбинационной конверсии. Энергия возбуждения триплета должна быть выше соответственно энергии субстрата [48]. Ниже приведены некоторые энергии триплетов в ккал/моль пропиофенон 74,6 бензо-фенон 68,5 трифенилен 66,6 нафталин 60,9 пирен 48,7. Если энергия триплета ниже энергии субстрата, сенсибилизатор может подавить реакцию. К сожалению, в случае олефинов используемые в качестве сенсибилизаторов кетоны могут вступать в реакцию с образованием оксетанов. Наконец, выбор растворителя может оказаться решающим. Учитывая все эти переменные величины, трудно сделать обобщения относительно того, что можно и чего нельзя делать. Поэтому будут приведены характерные примеры каждого типа реакции для того, чтобы читатель мог сделать собственные заключения. Среди этих реакций имеются цис-транс-кзоьлериэй-ция (разд. Г.1), изомеризация с перемещением двойной связи (разд. Г, 1), образование мостиков и сдваивание. Эти примеры взяты из работы Кана [49], если не оговорено особо. [c.147]

    Сначала рассмотрим реакции присоединения реагентов, содержащих способный к ионизации водород галогеноводородов, серной кислоты и воды. Общепринятый механизм дается лишь в общих чертах и иллюстрируется некоторыми примерами. Подобно дегидратации спиртов, присоединение включает стадию образования карбониевого иона. Между этими двумя реакциями существует аналогия, которая доказывает, что обе реакции протекают через одну и ту же промежуточную стадию. [c.185]

    Присоединение к олефинам реагентов, содержащих О—Н-связь, происходит по правилу Марковникова (атом О оказывается у более замещенного углеродного атома), что по-видимому объясняется участием карбениевого иона. Если гидроксилсодержащее соединение является слабой кислотой, например вода или спирт, необходим катализ протонной кислотой или кислотой Льюиса (ср. с реакцией гидратации), однако более сильные кислоты сами выступают в качестве источника протона. Далее, наличие в олефине алкильных заместителей (стабилизующих появляющийся карбение-вый ион) и напряжение в молекуле увеличивают его реакционную способность. Классическим способом гидратации простых олефинов, первоначально осуществлявшимся в промышленном масштабе, является присоединение серной кислоты, приводящее к кислому алкилсульфату, с последующим его гидролизом. Другие реакции присоединения гидроксилсодержащих соединений к олефиновым углеводородам не нашли широкого применения в синтезе, по-видимому, вследствие склонности более сложных карбениевых ионов к перегруппировкам. Некоторые примеры этих реакций даны уравнениями (91) — (93)  [c.201]

    Уравнение (157) представляет собой пример реакции, в которой первоначально образующийся аддукт вследствие неустойчивости подвергается дальнейшим превращениям. В уравнениях (158) — (160) и (162) отражены некоторые моменты, связанные со стереоспецифичностью присоединения и стереохимией аддуктов, полученных при использовании несимметричных карбенов и карбеноидов. Уравнение (164) иллюстрирует различную селективность карбенов, генерированных фотохимическим способом (триплетная форма) и разложением медного комплекса. Наконец, в уравнении ( 65) приведен пример реакции этоксикарбонилиитре.на, который можно генерировать термолизом этилазидоформиата или щелочным разложением ra-02N 6H4S02NH 02Et. [c.219]

    Некоторые примеры гомолитической фрагментации радикалов приведены в уравнениях (10), (16) и (29) — (31). Фрагментация — реакция, обратная радикальному присоединению к алкенам [см. уравнение (9)], свойственна радикалам, у которых Н = I, Вг или 5К. При Н = НзС фрагментация возможна только в тех случаях, когда вовлекается слабая или сильно напряженная связь. Имеются примеры внутримолекулярной фрагментации, например циклопро-пил-гомоаллильная перегруппировка (38, V = СНг) и аналогичное раскрытие кольца оксиранов (3 = 0). Фрагментация алко- [c.584]

    Из ряда дополнительных реакций, которые могут происходить по двойной связи С-1,2, простейшие наблюдаются в ходе биосинтеза ациклических каротиноидов. Наиболее ярким примером является присоединение воды с образованием 1-гидр-окси- и 1-метоксикаротиноидов, характерных для фотосинтезирующих и некоторых других бактерий. В случае гидратации ликопина по двойной связи С-1,2 образуется родопин >[1,2-ди- [c.68]

    Примеры реакций викариозного нуклеофильного замещения даны в некоторых последующих главах книги. Ниже приведены три типичных примера таких превращений. Первый пример связан с реакцией викариозного нуклеофильного замещения в пятичленных гетероциклических соединениях [42]. Во втором примере стабилизирующая анион трифторметансульфонильная группа (У) одновременно служит и уходящей группой (X) [43]. Третий пример в некоторой степени необычен, поскольку нуклеофил присоединяется не по орто- или пара-положению относительно нитрогруппы. Присоединение карбаниона проходит по положению С(2> 6-нитрохиноксалина образующийся в результате такого присоединения анион стабилизирован делокализацией отрицательного заряда одновременно с участием атома азота N(1) и нитрогруппы [44]. [c.42]

    Те несколько примеров, которые мы смогли рассмотреть, достаточно представительно иллюстрируют достижения и проблемы, связанные со стабильностью и реакционной способностью системы тетраэдрана. Значение исследований в этой, казалось бы, узкой области были ясно сформулированы в обзоре Майера [7а], где он приводит обширный список результатов общего характера, вытекающих из исследований тетра-тре/и-бутилтетраэд-рана. Мы не будем повторять его здесь полностью, а обратим внимание читателя лишь на некоторые из таких результатов. Это углубление нашего понимания стерических эффектов, в первую очередь обнаружение корсетного эффекта удивительные результаты рентгеноструктурного исследования (крайне изогнутые связи) структурные особенности гомоароматичности углубление понимания химии катион-радикалов открытие возможности реализации новых механизмов реакций (присоединения, аутоокисления, катионных перегруппировок) и т. д., и т. п. [c.386]

    К другим реакциям, протекающим по аналогичному механизму, относится присоединение цианид- и алкокси-ионов к а-гало-идкарбонильным соединениям (ниже даны некоторые примеры таких реакций). [c.30]

    С некоторыми примерами стереоселективного синтеза в растворе мы знакомились в предыдущих разделах курса, в частности при изучении реакций присоединения алкенов. Например, при гомогенном гидрировании алкенов в присутствии комплексов переходных металлов (см. гл. 15) реакции идут во внутрикоординационной сфере металла как син-присоединение. [c.465]

    Иногда в реакциях циклоприсоединения фураны выступают в качестве электроноизбыточных 2 тг-компонентов. Некоторые примеры приведены на рис. 6.17 присоединение к 1,3-диполю (нитрилоксиду) [54] и к гетеродиену (азоолефину) [55]. Для фуранов также характерна реакция Патерно—Бюхи с кетонами с образованием оксетанов. При взаимодействии с карбенами могут быть получены производные циклопропана [56]. [c.254]


Смотреть страницы где упоминается термин Некоторые примеры реакций присоединения: [c.158]    [c.405]    [c.188]    [c.274]    [c.386]    [c.321]    [c.177]    [c.229]    [c.197]    [c.217]    [c.55]    [c.78]    [c.170]    [c.283]    [c.390]    [c.353]    [c.282]   
Смотреть главы в:

Ионные реакции в алифатическом ряду  -> Некоторые примеры реакций присоединения




ПОИСК





Смотрите так же термины и статьи:

Некоторые примеры

Реакции присоединения



© 2025 chem21.info Реклама на сайте