Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение хрома, молибдена и вольфрама

    Шестую побочную подгруппу (подгруппу хрома) образуют металлы хром, молибден, вольфрам и искусственно полученный резерфордий. [c.511]

    Получение. Хром, молибден и вольфрам получают из природных соединений в виде металлов или в виде их ферросплавов, которые непосредственно используются для легирования специальных сталей. В последнем случае процесс идет значительно легче путем совместного восстановления оксидов железа и оксидов этих металлов. Например, восстановлением хромистого железняка РеО Сг Оз в электропечах углеродом можно получить феррохром  [c.377]


    Эти элементы не дают отрицательных ионов, поскольку они не могут присоединять электроны, в отличие от элементов главной подгруппы — р-элемен-тов. Отдавать электроны атомы -элементов могут не только с внешнего, но и с предпоследнего слоя (который у хрома содержит 13 электронов). Таким образом, в химическом взаимодействии у атомов этих элементов принимают участие 2 электронных слоя внешний и предпоследний. Общее количество электронов, которые они могут отдавать, равно 6. В этом проявляется их сходство с элементами главной подгруппы, т. е, с р-элементами, К побочной подгруппе элементов VI группы относятся металлы хром, молибден, вольфрам, раньше к этой группе относили элемент уран, который в настоящее время причисляется к актинидам. Все они имеют очень важное значение как металлы, применяющиеся в технике для получения различных сплавов. Среди них наиболее важным является хром. [c.453]

    К побочной подгруппе элементов VI группы относятся металлы хром, молибден, вольфрам, раньше к этой группе относили элемент уран, который в настоящее время причисляется к актинидам. Все они имеют очень важное значение уран как радиоактивный элемент, остальные — как металлы, применяющиеся в технике для получения различных сплавов. Среди них наиболее важным является хром. [c.445]

    С помощью электролиза можно получать покрытия в виде сплавов, содержащих такие металлы, которые не выделяются на катоде в чистом виде или выделяются с очень малыми выходами по току (например, вольфрам, молибден, рений и др.). Были разработаны условия электролитического получения сплавов вольфрам-железо, вольфрам-никель, вольфрам-кобальт, вольфрам-хром, молибден-никель и др. [c.431]

    Карбиды при получении образуют марганец, хром, титан, молибден, вольфрам и др. [c.143]

    По своей химической активности 1Вг занимает промежуточное положение между Ij и I I. В качестве конструкционных материалов, устойчивых в среде бромида иода, рекомендуются [420] графит, цирконий, хром, молибден, платина, тантал, вольфрам и даже свинец. Однако для получения особо чистых солей следует использовать аппаратуру из фторопласта. На рис. 39 приведен один из возможных вариантов реактора, изготовленного из этого материала. [c.360]

    Сухой способ. При сплавлении пробы с карбонатом натрия или едким натром и обработке полученного плава водой вольфрам переходит в раствор вместе с молибденом, хромом (VI), ванадием [c.742]


    В качестве легирующих элементов применяют хром, никель, молибден, вольфрам, ванадий, цирконий, титан, ниобий, кобальт,, в некоторых случаях медь. При выплавке сталей, удовлетворяющих особым требованиям, легирование производится элементами, часть которых обеспечивает получение заданных свойств сталей, а остальные играют роль стабилизаторов. [c.12]

    Все перечисленные выще вещества относятся к классу катализаторов Циглера, хотя некоторые из них значительно отличаются от первоначально употреблявшихся Циглером катализаторов. Имеются два других обширных класса катализаторов, обладающих стереоспецифическими свойствами, которые были первоначально открыть вследствие их способности катализировать реакцию получения линейного полиэтилена. Они обычно обозначаются названиями компаний, имеющих оригинальный патент. Катализаторы Филлипса состоят из окиси хрома с алюмосиликатом в качестве носителя. Многочисленные промоторы модифицируют действие этих катализаторов. Типичными являются никель, торий, железо, марганец, уран, ванадий, молибден, вольфрам и цирконий. [c.88]

    Природа металла. Некоторые металлы вообще не подвержены коррозии (платина, золото и др.), многие другие легко пассивируются (хром, никель, вольфрам, молибден, титан и др.). Эти металлы, добавленные в сплавы сталей передают последним свойство пассивации. На этом принципе основано получение. тегированных сталей. [c.160]

    Специальные элементы вводятся в сталь для придания ей определенных физико-механических свойств. К этим элементам относятся хром, никель, молибден, вольфрам, титан, кремний (при его содержании более 0,50/,), марганец при его содержании более 1%, медь, бор и др. Специальные элементы вводятся в сталь как в отдельности, так и в различных сочетаниях друг с другом, обусловливая тем самым получение необходимых физико-механических свойств. В зависимости от способа выплавки качественные легированные стали подразделяются на две группы 1) сталь качественную и 2) сталь высококачественную. [c.167]

    Из полиолефинов, содержащих порошкообразный свинец, изготовляют защитные экраны от воздействия нейтронов и у-лучей. Бериллий, хром, молибден, ниобий, тантал, вольфрам и нержавеющие стальные сплавы добавляют к смолам для получения теплостойких композиций. [c.15]

    Эксплуатационная надежность сталей в конструкциях высокого давления, работающих при высокой температуре, обеспечивается их легированием, основанном на использовании структурного упрочнения двух видов образования твердого раствора посредством введения элементов, повышающих температуру рекристаллизации и, снижающих интенсивность диффузионных процессов в сплаве, или получения высокодисперсной смеси фаз путем закалки и отпуска стали. Для структурного упрочнения первого вида обычно используют хром, молибден и вольфрам, второго вида - ванадий, ниобий и титан. [c.815]

    Сухой способ. При сплавлении пробы с карбонатом натрия или едким натром и обработке полученного плава водой вольфрам переходит в раствор вместе с молибденом, хромом (VI), ванадием (V), фосфором (V) и т. п. Таким способом его можно полностью отделить от многих элементов. Однако олово IV), ниобий и тантал при такой обработке частично переходят в раствор, частично оказываются в остатке и при этом могут удержать в остатке и некоторое количество вольфрама. [c.597]

    Вследствие легкой пассивируемости хром широко используется в качестве гальванических защитных покрытий и для получения коррозионностойких сталей. Молибден применяется для изготовления химической аппаратуры, вольфрам — в электротехнической промышленности (в частности, для производства ламп накаливания). Молибден и вольфрам применяются в качестве катализаторов. [c.373]

    Для получения катализаторов ионно-координационной полимеризации используют такие переходные металлы, как титан, ванадий, хром, марганец, железо, кобальт, никель, цирконий, ниобий, молибден, палладий, индий, олово, вольфрам. Для образования комплексов в основном с галогенидами этих металлов используют алкилпроизводные алюминия, цинка, магния, лития, бериллия. На этих катализаторах удалось осуществить промышленный синтез полипропилена, тогда как другие каталитические системы оказались неэффективными. Такие катализаторы широко используются для получения других полимеров (например, полиэтилена) строго стереорегулярной структуры, особенно цис-1,4-полибутадиена и цис-1,4-полиизопрена — синтетических каучуков высокого качества, полноценно заменяющих натуральный каучук, [c.48]

    Этим методом обычно пользуются для получения тугоплавких металлов, таких, как титан, молибден, хром, вольфрам и др.  [c.261]

    К. м. используют для получения металлич порошков, покрытий, монолитных форм как катализаторы и инициаторы хим процессов [гидрирование, гидроформилирование, гидрокарбоксилирование, полимеризация, изомеризация и диспропорционирование олефинов (метатезис), конверсия водяного газа и др ], для получения металлоорг. соединений. Карбонилы Мп антидетонатор моторных топлив См. также Железа карбонилы. Кобальта карбонилы. Марганца карбонилы. Никеля тетракарбонил. Хрома карбонилы О кар>бонилах W и Мо см соотв Вольфрам и Молибден. [c.325]


    Молибден может быть определен в присутствии шестивалентного хрома (0,004—0,009 г). В этом случае осадок необходимо прокаливать до МоОз. Шестивалентный вольфрам осаждается реагентом из кислых растворов и мешает определению молибдена. Двухвалентный кобальт (0,1 г), никель (0,15 г) и медь (0,12 г) не мешают полученный в этом случае осадок промывают сначала 0,2 N НС1, затем 0,02 А/ НС1. В присутствии трехвалентного железа (0,8 г) и пятивалентного ванадия (0,008 г) прибавляют 1—2 г комплексона III. [c.166]

    На термограммах продуктов полимеризации смол также фиксируется эндоэффект образования СггОз, однако, смещенный в более низкотемпературную область. Температура эндоэффекта различна и колеблется от 455 (хром-хромовые соли) до 530 °С (смолы, полученные введением в хромовую кислоту молибдена). Экзоэффект образования промежуточных форм хрома для смол на основе вольфрама, молибдена и хрома смещен в низкотемпературную область (345—360 °С) для смол на основе магния и алюминия образование промежуточных форм практически не фиксируется. На термограммах присутствуют также экзоэффекты окисления остатков металлов (вольфрам, молибден, магний), а также углерода и бора. Термограммы содержат ряд эндоэффектов, связанных с деструкцией смол. [c.91]

    Хром, молибден, вольфрам являются чрезвычайно важными в практическом отношении элементами. Применяются в металлургии как легирующие компоненты при получении спецсталей и других сплавов. Нержавеющие стали, содержащие до 23% хрома, устойчивы к коррозии, к высоким температурам, используются в химической и нефтяной промышленности. Броня для кораблей, прочная сталь для пушек изготовляются из хромомолибденовых и никелъ-молибденовых сталей. Хромомолибденовая сталь широко применяется в авиации. [c.385]

    Хром является представителем побочной подгруппы шестой группы периодической системы. Главная подгруппа шестой группы, как мы уже знаем, состоит из элементов, являющихся типичными металлоидами. В побочной подгруппе находятся элементы четных рядов, т. е. первых половин больших периодов, атомы которых характеризуются недостроенными предпоследними энергетическими уровнями. Поэтому у всех элементов побочной подгруппы, на внешнем электронном слое аюмов находится не более двух электронов-что и обусловливает их металлические свойства. Эти элементы не дают отрицательных ионов, поскольку они но могут присоединять электронов, подобно элементам главной подгруппы. В этом их коренное отличие. Отдавать электроны атомы элементов побочной группы могут не только с внешнего слоя, но и с предпоследнего недостроенного слоя, который содержит 12 электронов (у хрома 13). Таким образом, при химическом взаимодействии у атомов этих элементов принимают участие 2 электронных слоя внешний и предпоследний. Общее количество электронов, которые они могут отдать, равно шести. В этом проявляется их сходство с элементами главной подгруппы. К побочной подгруппе элементов шестой группы относятся металлы хром, молибден, вольфрам и уран. Все они имеют очень важпое значение уран как радиоактивный элемент, остальные как металлы, применяющиеся в технике для получения различных сплавов. Среди них наиболее важным является хром. [c.263]

    А. Н. Несмеянов [18, 19] указал, что при получении карбони лов металлов шестой группы (хром, молибден, вольфрам), решающим является не образование каких-либо промежуточных металлоорганичес ких соединений с пониженной валентностью металла, а сам процесс восстановления исходной соли. [c.33]

    Элементы подгруппы хрома в природе. Получение и применение. Хром, молибден и вольфрам в природе встречаются только в виде соединений. Наиболее распространен из них хром его содержание в земной коре составляет 2-10- % (масс.). Важнейшим минералом, в состав которого входит хром, является хромит хромистый железняк) Ре(Сг02)2- Содержание молибдена в рудах не превышает 1—2% (масс.), а в земной коре он находится в количестве 2,5-10- % (масс.). В промышленности для выделения молибдена используют следующие минералы молибденит (молибденовый [c.472]

    ЛЕГИРОВАНИЕ (нем. legieren — сплавлять, от лат. ligo — связываю, соединяю) — введение в металлы и сплавы легирующих материалов для получения сплавов заданного хим. состава и структуры с требуемыми физ., хим. и мех. св-вами. Применялось еще в глубокой древности, в России — с 30-х гг. 19 в. Л. осуществляют введением легирующих материалов (в виде металлов и металлоидов в свободном состоянии, в виде различных сплавов, напр, ферросплавов, или в газообразном состоянии) в шихту или в жидкий (при выплавке) сплав. Иногда добавки легирующих материалов вводят в ковш. В закристаллизовавшемся сплаве легирующие материалы распределяются в твердом растворе и др. фазах структуры, изменяя его прочность, вязкость и пластичность, повышая износостойкость, увеличивая глубину прокаливаемости и др. технологические св-ва. Л. существенно влияет па положение критических точек стали. Никель, марганец, медь и азот расширяют по температурной шкале область существования аустенита, причем при известных соотношениях содержания углерода и этих элементов аустенит существует в области т-р от комнатной и ниже до т-ры плавления. Хром, кремний, вольфра.м и др. элементы сужают эту область и при определенных концентрациях углерода и легирующего элемента расширяют область с>тцествоваиия альфа-железа (см. Железо) до т-р плавления. При некоторых концентрациях углерода и легирующего материала сталь даже после медленного охлаждения имеет структуру закалки. Легирующие материалы, не образующие карбидов (напр., никель, кремний и медь), находятся в твердых растворах, карбидообразующие материалы (хром, марганец, молибден, вольфрам и др.) частично растворяются в железе, однако в основном входят в состав карбидной фазы и при больших концентрациях сами образуют карбиды (напр.. [c.681]

    Восстановление металлов из их соединении более активными металлами называется MeTajiAOTepjuueu. В частности, получение металлов с помощью алюминия называется алюминотермией. Металлотермией получают те металлы, которые при восстановлении их оксидов углем образую т карбиды (наиример, марганец, хром, титан, молибден, вольфрам). Иногда металлы из оксидов восстанавливают водородом  [c.306]

    При относительно низкой температуре окисел еще легко восстановить, если теплота образования на1 атом кислорода не превышает 70 ккал. Если она выше 70 ккал, требуется значительно более высокая температура и большее количество водорода. В этом случае труднее предупредить внесение примесей вследствие контакта со стенками реакционного сосуда. А при теплоте образования выше 90 ккал мefoд совсем не пригоден. Все металлы V группы также можно легко получить восстановлением их окислов водородом для металлов первых четырех групп этот метод исключен. Марганец, хром и ванадий представляют промежуточный случай. Благодаря высоким температурам плавления, несмотря на относительно более высокие теплоты образования, можно получить рений, молибден, вольфрам, ниобий и тантал высокой степени частоты. Металлы, окислы которых восстанавливаются водородом, в большинстве случаев можно также получить электролизом водных растворов. Электролитическое получение металлов 5-го и 6-го периодов, которые [c.342]

    Метод накаленной проволоки также основан на очистке путем выделения из газовой фазы. Поэтому он превосходит метод Гросса именно тем, что образуется компактный металл. Этим методом впервые были получены металлы четвертой группы в более ковкой форме. При правильном применении этого метода получается металл со значительно меньшим содержанием кислорода, чем полученный методом Кролла. Хром, полученный иодидным способом, имеет нормальную ковкость. Этот. метод можно применить ко многим металлам тантал, молибден, вольфрам и рений получали диссоциацией хлоридов, ванадий, хром, железо и. медь — из иодида, а платину, железо и никель — из карбонилов. Условиями применимости метода накаленной проволоки являются малая теплота образования иодида и высокая температура плавления металла. Поэтому этот метод применим для получения металлов первых трех групп периодической системы, а также лантанидов и актинидов, за исключением тория. Попытки получить бериллий из иодида не удались, так как иодид реагирует с кварцем сосуда и поэтому получается не чистый металл, а силицид. [c.345]

    С этим свойством титана нужно считаться, когда для отделения от хрома, ванадия, молибдена и вольфрама исследуемую пробу сплавляют с перекисью натрия. При этом не только хром, в(анадий, молибден, вольфрам и алюминий переходят в раствор, но в значительной части и титан в виде Ма4Т105, почему раствор, полученный после обработки сплава водой , нужно к ипя-тнть для разрушения образовавшейся вследствие гидролиза, надтитановой кис лоты [c.206]

    В британском патенте [16] описано приготовление катализаторов для получения кислородсодержащих соединений из окиси углерода и водяного пара. Эти катализаторы являются цеолитами, осажденными при рН=6,8—8, и содержат по меньшей мере по одному элементу из обеих перечисленных ниже групп. Первая группа включает щелочные и щелочноземельные металлы, а также следующие тяжелые металлы ванадий, хром, молибден, марганец, железо, кобальт, никель, серебро, медь, цинк, кадмий, свинец, сурьму и висмут. Ко второй группе относятся бериллий, магний, алюминий, церий, редкие земли, бор, кретий, титан, цирконий, торий, уран и вольфрам. [c.272]

    Элементы хром Сг, молибден Мо и вольфрам составляют VIБ группу Периодической системы Д. И. Менделеева. Искусственно получен и их аналог в 7-м периоде — радиоактивный элемент 106 в виде изотопа с массовым числом 263 и периодом полураспада 0,9 с (собственного названия 9, 1еменп 106 пока не имеет). [c.237]

    Нахождение в природе и методы получения металлов в свободном состоянии. Хром встречается в виде своих, соединений хромистого железняка РеО-СгаОз, или РеСгз04 крокоита РЬСг04. Хром в земной коре составляет 6- 10 % (мае.).] Молибден извлекается из природных соединений молибденита МоЗз и вульфенита MgMo04. а вольфрам — из шеелита Са У04 и вольфрамита (Ре, Мп) Ш04. Молибден и вольфрам составляют в земной коре [c.340]

    Элементы хром (Сг), молибден (Мо) и вольфрам (W) составляют побочную подгруппу шестой группы. Элемент № 106 (названия и символа пока не имеет), KOTopHit также находится в побочной подгруппе VI группы,— радиоактивный элемент, искусственно полученный впервые в 1974 г. в лаборатории Объединенного института ядерных исследований (г. Дубна, Россия) изотоп с массовым числом 263 имеет период полураспада, равный [c.315]

    Нахождение в природе и методы получения металлов в свободном состоянии. Хром встречается н виде своих соединений хромистого железняка РеО-СггОз или РеСггО , крокоита РЬСг04- Хром в земной коре составляет 6-10 масс.%. Молибден извлекается из природных соединений молибденита МоЗа и вульфенита MgMo04, а вольфрам — из шеелита СаШО и вольфрамита (Ре, Мп) Ш04- Молибден и вольфрам составляют в земной коре соответственно 3-10 и б-10 масс. %. Получают эти металлы двумя путями в двух разных видах, как п ванадий  [c.355]

    Третий метод уменьшения скорости газовой коррозии заключается в защите поверхности металла специальными термостойкими покрытиями термодифузионными железоалюминиевыми или железохромовыми покрытиями (процессы нанесения этих покрытий известны под названием алитирование и термохромирование ), металлокерамическими покрытиями, или керметами, металлоокисными покрытиями, для получения которых в качестве неметаллических компонентов применяют тугоплавкие окислы, например А12О3, М 0, и соединения типа нитридов и карбидов. Металлическими компонентами служат металлы группы железа, хром, вольфрам и молибден.  [c.14]

    Элементы хром Сг, молибден Мо и вольфрам , а также искусственно полученный радиоактивный элемент с порядковым номером 106 (сиборгий Sg) составляют УШ-группу Периодической системы Д.И. Менделеева. Общая электронная формула валентного уровня для атомов хрома и молибдена (п-1)степеней окисления. Для хрома характерны степени окисления +П, +П1 и +У1, устойчивая степень окисления -1-П1. Для молибдена и вольфрама характерная и устойчивая степень окисления -1-У1. [c.230]


Смотреть страницы где упоминается термин Получение хрома, молибдена и вольфрама: [c.404]    [c.281]    [c.281]    [c.685]    [c.306]    [c.376]    [c.571]    [c.374]    [c.9]   
Смотреть главы в:

Неорганическая химия -> Получение хрома, молибдена и вольфрама




ПОИСК





Смотрите так же термины и статьи:

Вольфрам получение

Молибден получение



© 2024 chem21.info Реклама на сайте