Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение низших галогенидов

    Реакция обратима. По закону действия масс выход продуктов реакции возрастает при увеличении концентрации исходных ве-ществ или при удалении из реакционной массы продуктов реакции. Следовательно, реакцию нужно проводить, отгоняя воду или алкил-галогенид, если он обладает достаточно низкой температурой кипения. Полезно также применять галогеноводородную кислоту максимально высокой концентрации или заменить ее смесью соответствующей соли и серной кислоты. Следует, однако, помнить, что серная кислота является окислителем, поэтому во избежание окислительно-восстановительной реакции между серной и галогеноводородной кислотами следует применять серную кислоту такой концентрации, при которой ее окислительное действие минимально. Подобный вариант проведения синтеза не может быть использован для получения иодидов. [c.106]


    Другим важным процессом, который широко используется в промышленности, служит получение полимеров низкого давления на основе катализаторов Циглера — Натта. Эти катализаторы представляют собой систему из галогенидов переходных металлов и металлорганических соединений. При этом полимеры высокого качества получаются при обычных условиях (без применения высокого давления), что сразу удешевило их стоимость. [c.282]

    Кроме получения реактивов Гриньяра, важное применение рассматриваемая реакция находит для превращения алкил- и арилгалогенидов в литийорганические соединения [327] она также была проведена и для многих других металлов, например Na, Ве, Zn, Hg, As, Sb и Sn [328]. Для натрия заметным побочным процессом является реакция Вюрца (реакция 10-87). В случае калия образуется сложная смесь продуктов с очень низким содержанием RK [329]. Иногда, если реакция между галогенидом и металлом слишком медленная, можно использовать сплав металла с калием или натрием. Показательным примером служит получение тетраэтилсвинца из этилбромида и сплава РЬ—Na. [c.466]

    Электрохимический метод. Низкий (—3,02 В) нормальный потенциал лития исключает возможность его получения из водных растворов солей. Электролиз растворов галогенидов лития в органических растворителях (пиридине, ацетоне, нитробензоле) дает небольшой выход по току (30—40%). Поэтому практическое значение получил только электролиз расплавленных солей. [c.68]

    Все указанные методы получения не пригодны для выделения Sm, Ей и Yb, так как восстановление идет лишь до стадии образо-ван-ия LnXj, обладающих к тому же значительной летучестью 18161. Известен лишь один случай восстановления ЗтВгз с Ва, когда удалось получить металлический Sm в виде слитка, но выход по этой реакции очень мал, вероятно, из-за сублимации как в виде SmBfa, так и в виде металла [1544]. Поэтому эти элементы получают в виде металлов лишь при восстановлении окислов методами, объединяемыми во вторую группу. Ввиду того, что все три металла при температурах реакции обладают высокими упругостями паров, удобно переводить металлы непосредственно в дистиллят [814, 1149, 1545]. Кристаллы образ)потся либо на стенках тиглей, либо на дистилляционных колонках длиной несколько сантиметров, присоединенных к тиглям. Как видно из приложения 4, выход металла при таком проведении реакции сильно варьирует с изменением условии и существенно зависит от времени процесса. Для восстановления могут быть использованы кальций, барий, алюминий и даже лантан, причем преимущество последнего в том, что благодаря низкой летучести он не загрязняет дистиллята. Количество примесей здесь несколько больше, чем в металлах, полученных восстановлением галогенидов. [c.23]


    Однако в других условиях комплексы АгН-МХд могут иметь (Г-строение. Перкампус и сотр. [171, 1721 изучали спектры тонких пленок, полученных сублимацией галогенида на слой ароматического углеводорода в вакууме при низкой температуре. Анализ УФ- и ИК-спектров приводит к выводу, что в этих условиях образуются не Я-, а сг-комплексы следующего строения [1521  [c.330]

    Ввиду того, что выходы в этих реакциях низкие, многие исследователи избегали их применения. Однако выходы алкилбензолов часто были не столь низкими, как можно было ожргдать на основании возможности одновременного образования трех продуктов конденсации, а также и другие побочных продуктов. Получение больших количеств алкилбензолов может быть объяснено тем, что реакция, вероятно, протекает с промежуточным образованием фенилнатрия, который легко реагирует е алифатическим галогенидом и труднее с ароматическим галогенидом. Все же реакция Вюрца-Фиттига может быть рекомендована для получения чистого алкилбензола, так как побочные продукты обычно легко отделяются. Например, при реакции бромистого этила и бромбензола образуются 7 -бутан и дифенил в качестве побочных продуктов, оба они очень легко отделяются от этилбензола перегонкой. Этот метод дает лучшие выходы при приготовлении к-алкилбензолов. В большом масштабе 151 реакция Вюрца-Фиттига была применена прп приготовлении н-де- [c.486]

    Сопоставление результатов исследований по катионной полимеризации изобутилена в присутствии галогенидов металлов и подобных каталитических систем показывает, что при низких температурах, особенно в неполярных растворителях, введение соини-циаторов оказывает существенное влияние на скорость реакции, конверсию мономера и молекулярную массу полученных поли--меров. [c.333]

    На получение реактивов Гриньяра оказывает влияние наличие в галогениде других функциональных групп. Так, в молекуле могут присутствовать группы, содержащие активный водород (см. описание реакции 12-22), например группы ОН, NH2 и СООН, но чтобы мог образоваться реактив Гриньяра, эти группы должны быть способны превращаться в соответствующие соли (0 , ЫН- и С00 ). Такие группы, как С = 0, С = Н, N02, СООК и др., способные взаимодействовать с реактивами Гриньяра, полностью предотвращают их образование. Как правило, к функциональным группам, наличие которых в молекуле галогенида не мешает реакции, относятся только двойные п тройные связи (за исключением концевых тройных связей), а также группы ОК и МКг. Однако р-галогеносодержащие простые эфиры при обработке магнием дают обычно продукты р-элиминирования (см. т. 4, реакцию 17-31), а а-галогеносодер-жащие простые эфиры [323] могут образовывать реактивы Гриньяра только при низких температурах в тетрагидрофуране или метилале, например [324]  [c.465]

    Один ИЗ недостатков электрохимического получения рубидия и цезия из галогенидов заключается в том, что потенциалы разложения последних высоки (например, 3,6 В для s l при 700 ), второй недостаток обусловливается низкой температурой плавления металлов и их высокой растворимостью в солевых расплавах (растворимость цезия в s I 7,2% при 646° [257]). [c.156]

    И поэтому при взаимодействии этих галогенидов с реактивом Гриньяра получаются смеси. Винилгалогениды также реагируют с реактивом Гриньяра [75], но в этом случае выходы бывают очень низкими. Интересно отметить, что эта реакция катализируется галогенидами металлов, например такими, как хлористый кобальт [76]. Кроме того, винилгалогениды образуют реактивы Гриньяра в 2-метилт1етрагидрофуране или в тетрагидропиране [77] с хорошими выходами, и их можно использовать в реакции с алкилгало-генидами для получения алкенов. [c.153]

    По этой же методике можно синтезировать и другие алкил-ацетилены, исходя из первичных бромистых алкилов. При получении н-пропилацетилена продолжительность прибавления бромистого н-пропила должна равняться 45—60 мин., причем выход получается более низким (40—50%), что объясняется увлечением вещества вместе с аммиаком, если только не применять холодильник с сухим льдом (т. кин. 39—40° 1,3850). н-Амилацетилен (т. кип. 98° По 1,4088) и изоамил ацетилен (т. кип. 91—92° 1,4060) можно синтезировать по этой же методике с выходом, равным 70—80%. Продолжительность прибавления галогенида составляет 1,5—2,0 часа. н-Гексиладетилен [т. кип. 76—77° (150 мм) по 1,4157] получается с выходом 65%, если применить избыток ацетиленида натрия, равный 1 молю. Галогенид прибавляют в течение 1 часа, и смесь перемешивают дополнительно в продолжение еще 3 час., прежде чем подвергать ее гидролизу. [c.113]

    МЕТАЛЛОТЕРМИЯ, процессы получения металлов, основанные на восстановлении их оксидов и галогенидов другими, более активными металлами протекают с выделением тепла. С помощью М. получают такие металлы, как, напр., Т), и, РЗЭ, Nb, Та, безуглеродистые сплавы, отличающиеся высокой чистотой (гл. обр. по углероду). Высокая чистота конечных продуктов металлотермич. восстановления обусловливает, напр., высокую пластичность полученных металлов, т. к. содержание мн. примесей в них, в первую очередь примесей внедрения, на очень низком уровне. [c.48]


    Соединения типа АХО где А--КЬ или Ся, X — галоид, представляют в настоящее 1время интерес по крайней мере в двух отношениях. Во-первы,ч, благодаря высокому температурному коэффициенту растворимости и сравнительно низким температурам термического разложения эти соединения могут быть использованы для глубокой очистки рубидия и цезии от примесей и последующего получения высоко чистых галогснидов этих металлов — важнейших материалов для специальной оптики и других областей новой техники. Во-вторых, хлораты, броматы и йодаты рубидия и цезия могут получить непосредственное применение благодаря собственным физическим свойствам, в частности пьезоэлектрическим. В обоих случаях необходимы препараты высокой чистоты. Наконец, очищенные соединения могут быть использованы для получения других (кроме галогенидов) высоко чистых солей рубидия и цезия. [c.77]

    Карбонил. Вольфрам образует с окисью углерода гексакарбонил Ш(СО) й. Это блестящие, бесцветные кристаллы, возгоняющиеся при нагревании выше 50° и разлагающиеся выше 100—150°. При их разложении на стенках сосуда образуется блестящий зеркальный налет металла. Ш(СО)в получается действием окиси углерода на порошок вольфрама при низком давлении и высокой температуре, а также восстановлением УС1з цинком или алюминием при 70—100° в этиловом спирте под давлением 145—220 атм окиси углерода. При термической диссоциации Ш(СО)в образуются тетракарбонил Ш(С0)4, три-карбонил Ш(СО)з и др. Гексакарбонил при комнатной температуре устойчив против действия воды, крепких серной, соляной и разбавленной азотной кислот. Вода не растворяет его, спирт и эфир растворяют незначительно, а хлороформ — хорошо. Ш(СО) з кипит под давлением при 175°. Хлор и бром, взаимодействуя с ним, образуют галогениды вольфрама. Ш(СО) в образует производные с рядом органических соединений — аминами и др. Может быть использован для получения вольфрамовых покрытий и как полупродукт для получения хлоридов и органических соединений вольфрама. [c.239]

    Фтор легко вытесняет галогены из большинства неорганических галогенидов. В ряде случаев замещение сопровождается окислением, как это отмечено в разд. III,А. Перечисленные ниже фториды металлов были получены фторированием их галогенидов NiF2 [2361, HgFa [2371 и iiF2 [2381. Для синтеза данным способом хорошими реагентами являются иодиды металлов, так как завершения реакции можно добиться при более низких температурах, чем для хлоридов или бромидов, Хорошим способом получения трифторида алюминия, который трудно получить свободным от окиси алюминия, служит реакция фтора с трииодидом алюминия. В общем случае в этих обманных реакциях фтор может заменить трифторид хлора [147]. Трифторид брома также является активным реагентом в обменных реакциях, но образование комплексов препятствует его применению. [c.351]

    Гексениллитий. Настоящая методика [15] иллюстрирует использование трет-бутиллития для получения растворов литийорганических соединений, не содержащих алкил галогенидов, а также применение очень низких температур. [c.35]

    Тригалогенометильные анионы, полученные другими методами [47], также дают свободные карбены. Отщеплением галогеноводородов можно получить также винилиденкарбены, однако многие органические галогениды реагируют с основаниями, в особенности с литийалкилами, с образованием карбеноидов [61], которые устойчивы при низких температурах и могут непосредственно реагировать с алкенами, давая циклопропаны. Ситуация, таким [c.593]

    Электроосаждение из неводных сред металлов четвертой группы представляет интерес прежде всего для германия и подгруппы титана, поскольку эти металлы электролитически из водных растворов не осаждаются [484, 404]. Наилучшие результаты получены в случае германия. Из спиртовых растворов (преимуш ественно в двухатомных спиртах) галогенидов германия выделены тонкие катодные пленки металлического германия [702, 641, 1225, 482, 381, 292, 650, 291, 293]. Наряду с осаждением германия на катоде происходит выделение водорода, на последний процесс расходуется основная часть тока. Выход по току германия низкий (порядка 1—3 %) Большое влияние на процесс злектроосаждения оказывает природа металлической подложки. При определенных концентрациях галогенида германия, повышенных плотностях тока и температурах возможно катодное образование диоксида германия [482, 196]. Пример оптимальных условий получения металлического германия растворитель — этиленгликоль, концентрация ОеСи — 3—5 %, температура — комнатная, интервал плотности тока 5—50 А/дм . При этих условиях на подложках из меди, серебра, платины и алюминия осаждаются ровные, хорошо сцепленные с подложкой, компактные германиевые покрытия светло-серого цвета. В качестве анода использовали графит или германий, выход по току германия составляет 2 % [291, 293]. Возможно катодное получение пленок германия и из других неводных сред, например из низкотемпературных расплавов ацетамида [147]. Из растворов в ацетамиде с добавками хлорида аммония при температуре 90—130 °С двухвалентный германий восстанавливается, образуя тонкослойные (1—2 мк) осадки, прочно сцепленные с подложкой. Выход по току еще ниже, чем в спиртовых растворах (приблизительно 0,1—0,5 %) Из-за выделяющегося водорода осадок германия при этом достаточно наводорожен. [c.157]

    Полиядерные комплексы образуются не только с ОН-группами, но и с лигандами, роль которых выполняют галогенид-ионы (для металлов Мо, ЫЬ, Та), ацетат-ионы (Ре, Сг, К), карбоксильная группа (ЭДТА). Возможны также смешанные полиядерные образования, в которых мостиками служат ацетат- и гидроксид-ионы (Ре +, Сг + ) [10, с. 57]. Так, исследования комплексообразования иона железа с ацетат-ионом показали, что при увеличении концентрации ионов железа гидролиз протекает при более низких pH (в более кислой среде), причем образуются полимерные формы Ре2(ОН)2 , сочетающиеся с Pe (OH) + и Ре(0Н)2 . Аналогичная картина наблюдается и для системы Ре +— СНзСООН. К сожалению, эта группа растворов полимеров не обследована в качестве клеев. Исключение составляют клеи, полученные автором с сотрудниками [17] на основе полимеров, содержащих ацетат-ион. [c.20]

    Открытие Циглером в 1955 г. инициаторов для полимеризации этилена (галогениды металлов — металлалкилы) произвело подлинную революцию в химии полимеров. Затем Натта и его коллеги в Милане показали, что подобные каталитические системы могут быть использованы для получения полимеров с контролируемой стереохимией из широкого ряда винильных и диеновых мономеров [1,2]. Высокостереорегулярные полимеры способны кристаллизоваться и могут быть изучены рентгенографическим методом. Полимеры с более низкой регулярностью обычно не кристаллизуются (это соблюдается не всегда), однако их свойства могут сильно зависеть от степени стереохимической регулярности. Ранние исследования [3—5] влияния стереорегулярности цепи на кристаллизуемость и другие физические свойства осложнялись тем, что не было прямых экспериментальных измерений конфигурационных последовательностей. Применение спектроскопии ЯМР высокого разрешения [6—8] для исследования этих полимеров открыло возможность проведения таких измерений и позволило сравнить реальные полимерные цепи с теоретическими предсказаниями [9—12]. [c.77]

    NaF и KF. Экспериментальное определение молекулярных постоянных NaF и KF встречает большие трудности из-за низкой летучести этих веществ и диффузного характера их электронных спектров. Единственной работой, в которой были получены полосатые спектры фторидов натрия и калия, является работа Барроу и Каунта [648], которые исследовали спектры поглощения галогенидов щелочных металлов в ультрафиолетовой области на приборах Хильгера с низкой и средней дисперсией. Спектры обеих молекул состояли из размытых полос, не имеющих кантов. Определить постоянные NaF из полученных спектрограмм не удалось, так как спектр состоял только из пяти полос, причем в величине интервалов между полосами отсутствовала какая-либо закономерность. В то же время спектр KF содержал свыше 20 полос, которые авторы работы 1648] интерпретировали как связанные с переходами с ряда последовательных колебательных уровней основного состояния в верхнее нестабильное (или имеющее небольшой минимум потенциальной энергии ) возбужденное состояние этой молекулы. Поскольку в интервалах между полосами KF также отсутствовала строгая последовательность, для определения частоты колебания молекулы фтористого калия Барроу и К унт оценили величину постоянной ангармоничности, предположив, что [c.897]


Смотреть страницы где упоминается термин Получение низших галогенидов: [c.139]    [c.163]    [c.72]    [c.385]    [c.139]    [c.139]    [c.25]    [c.143]    [c.288]    [c.700]    [c.80]    [c.120]    [c.28]    [c.135]    [c.226]    [c.539]    [c.310]    [c.392]    [c.69]    [c.185]    [c.180]    [c.27]    [c.69]    [c.38]    [c.135]    [c.434]    [c.745]    [c.898]   
Смотреть главы в:

Руководство по неорганическому синтезу -> Получение низших галогенидов




ПОИСК





Смотрите так же термины и статьи:

Галогениды низшие

Галогениды получение

Низшие галогениды и методы их получения

Получение гафния из галогенидов низшей валентности



© 2024 chem21.info Реклама на сайте