Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции со спиртами, фенолами и кислотами

    Эта фенолокислота может вступать в различные реакции, свойственные как кислотам, так и фенолам. Так, со спиртами она дает эфиры, например с н-бутанолом — дибутиловый эфир  [c.29]

    К. Бауэр. Анализ органических соединений. Издатинлит, 1953, (488 стр.), В книге содержится описание методов открытия, идентификации и количественного определения важнейших классов и отдельных представителей органических соединений углеводородов, галогенопроизводных, спиртов, фенолов, эфиров, нитропроизводных, аминов, альдегидов, кетонов, кислот, углеводов, жиров, алкалоидов и др. По каждому классу дан обзор общих групповых реакций и описаны специфические методы открытия и количественного определения главных представителей класса. Каждая глава снабжена списком литературы. [c.492]


    Эта реакция имеет, вероятно, более общее значение. Конденсацией спиртов, фенолов, кислот или аминов с окисью углерода под давлением при температуре 150—200 в присутствии этилового спирта и алкоголята натрия получают соответствующие эфиры или третичные амины [68]. Схему процесса можно представить следующим. образом сначала спирт конденсируется с окисью углерода в этилформиат (I) одновременно спирт, фенол, кислота или вторичный амин, взаимодействуя с этилатом натрия, образуют натриевые производные (II), которые затем превращаются с этилформиатом в конечные продукты (III)  [c.736]

    Реакции карбоновых кислот и их производных (ангидридов И хлорангидридов) с нуклеофильными реагентами (спиртами, фенолами, аминами) [c.99]

    Реакции спиртов и фенолов с кислотами, (этерификация). Весьма большое значение имеют реакции спиртов с кислотами. При этом происходит выделение воды и образуются вещества, называемые сложными эфирами, по схеме [c.172]

    Чем объяснить, что нафтолы в присутствии минеральных кислот легко взаимодействуют со спиртами, образуя простые эфиры, однако те же реакции с фенолом не идут или проходят с большим трудом  [c.209]

    РЕАКЦИИ СО СПИРТАМИ, ФЕНОЛАМИ, КИСЛОТАМИ [c.64]

    Недавно опубликован новый метод этерификации пространственно затрудненных кислот [20]. В этом случае реакция между спиртом и кислотой катализируется ангидридом трифторуксусной кислоты. Отличные выходы обычно получают с пространственно затрудненными кислотами, такими, как антрацен-9-карбоновая и 2,4,6-три-метилбензойная, и простыми или пространственно затрудненными спиртами или фенолами. Если и фенол, и кислота пространственно затруднены и возможен другой путь протекания реакции, например ацилирование атома углерода фенола, этерификация может не пойти. Согласно предполагаемому механизму, реакция идет по двум направлениям, которые оба включают образование протонированного ангидрида (IV) [c.285]

    Реакция алкилирования фенола изобутиловым спиртом в присутствии сераой кислоты протекает по схеме  [c.385]

    Метод определения гидроксильных групп по Верлею [37], как и предыдущий, основан на реакции спиртов (фенолов) с ангидридами органических кислот, идущей с количественным выходом в присутствии пиридина. Освобождающаяся при этом молекула органической кислоты связывается с пиридином, образуя нейтральную соль. [c.274]

    Метод основан на реакции спиртов (фенолов) с ангидридами органических кислот, идущей с количественным выходом в присутствии пиридина. Освобождающаяся при этом молекула органической кислоты связывается пиридином, образуя нейтральную соль. [c.157]


    Реакции RLi со спиртами, фенолами, кислотами и др. 625 [c.65]

    Реакции развития цепи весьма многообразны и сложны. В них кроме молекул исходного вещества могут участвовать и кислородсодержащие продукты спирты, фенолы, альдегиды и кетоны, кислоты и др. Наиболее важным являются реакции вырожденного разветвления, благодаря которым окисление самоускоряется. [c.174]

    Окись этилена — соединение жирного ряда, обладающее высокой реакционной способностью. Та легкость, с которой окись этилена вступает в многочисленные реакции присоединений, определяется нестойкостью эпоксидного трехчленного кольца, раскрывающегося под действием различных веществ. Как уже сообщалось, окись этилена очень легко присоединяет хлористый водород с образованием этиленхлоргидрина. Реакция протекает настолько гладко, что при пропускании газообразной окиси этилена в растворы хлоридов металлов, например железа или меди, тотчас же осаждается соответствующая гидроокись это явление заставило еще Кекуле приписать окиси этилена основные свойства. Окись этилена реагирует со спиртами, фенолами, органическими кислотами, аммиаком, гриньяровскими соединениями, синильной кислотой, сероводородом и т. п. Ниже приведено несколько примеров этих реакций. [c.400]

    Основу производства эпоксидных материалов составляют реакции эпихлоргидрина с полифункциональными спиртами, фенолами, аминами, кислотами и т. д.  [c.193]

    Частный случай реакций протолиза представляет реакция обменного разложения растворенного вещества водой — гидролиз. Этот процесс широко используется в химической технологии. Например, для промышленного получения спиртов, фенолов, высших алифатических кислот из растительного масла и животных жиров глюкозы, ксилозы, этанола и т. д. из полисахаридов растительных материалов (древесины, соломы и др.). [c.47]

    Фенолы хорошо могут быть охарактеризованы, подобно спиртам, реакциями с хлорангидридами кислот и изоцианатами. Многие фенолы дают хорошо кристаллизующиеся трибромфенолы. [c.322]

    В реакции вступают металлические производные разных классов соединений спиртов, фенолов, карбоновых кислот, гидропероксидов, амидов, аминов и др.. а также металлорганические соедииения. иапример  [c.349]

    Прямая реакция спиртов или фенолов с кислотами приводит к установлению равновесия и требует специальных условий, особенно в случае фенолов, для доведения ее до конца (разд. 18.16). В лаборатории чаще используют реакцию с хлорангидридом или ангидридом. [c.640]

    Смешанные эфиры и амидоэфиры арилфосфоновых и арилтиофосфоновых кислот с хорошим выходом получают окислением или присоединением серы к соответствующим эфирам или амидоэфирам арилфосфонистой кислоты, которые в свою очередь готовят по реакции спиртов, фенолов и тиолов с арилди-хлорфосфинами в присутствии акцепторов хлороводорода (схема 83). [c.473]

    Предложенный метод не требует приводить аппаратуру к исходным температурным условиям устраняется газовая бюретка с большим количеством ртути можно пользоваться более широким набором растворителей и, в первую очередь, обычным абсолютным эфиром, можно проводить реакцию при более высокой температуре, отогнав эфир. Успешные результаты были получены [16] для ок-сисоединений первичных, вторичных и третичных спиртов жирного ряда, гликолей, спиртов ряда терпенов, ароматических спиртов, фенолов, кислот и аминов. Вещества, плохо растворимые в эфире (глицерин,галловая кислота), почти не реагируют с иодистым метилмагнием. Оказалось возможным применять и другие растворители [c.464]

    И собственно катализатором становится анион реагента А (ОН-, RO-, N-, R OO- и т.д.). Изучение кинетики показало, что катализируемая основанием реакция имеет третий порядок и в ней кроме а-окиси и аниона участвует исходный реагент (спирт, фенол, кислота и т. д.)  [c.390]

    Определение активного водорода с помощью литий-алюми-иийгидрида проводят в атмосфере азота или водорода. С то-мощью. этого реактива можно определять активный водород в спиртах, фенолах, кислотах, аминах, амидах и кетонах, подвергающихся енолизации [271, 374, 416, 732]. Реакция с литий-алюминийгидридом протекает быстрее, чем с реактивом Гриньяра он взаимодействует и с соединениями, не реагирующими с реактивом Гриньяра вследствие пространственных затруднений. В случае, когда необходимо установить наличие енолизи-рующихся групп В соединениях неизвестного строения или приблизительно оценить влияние пространственных затруднений на активность ато ма водорода, реко.мендуется провести определе- 1ие обоими методами и сравнить результаты. [c.176]

    Органич. К. а. резко отличается от неорганич. анализа. Подавляющее большинство органич. соединений имеет ковалентный характер и потому каждое из них должно идентифицироваться индивидуально. Для этого сначала проводят реакции, определяющие принадлежность соединения к к.-л. классу органич. соединений, а затем — реакции, характерные для данного соединения. В органич, К. а. смесь веществ первоначально разделяют, основываясь на их разной летучести, растворимости или сорбции. К легколетучим относят вещества с т. кин. ниже 160°, к труднолетучим — ст. кип. выше 160°. Затем вещества разделяют по классам согласно их растворимости, преим. в воде и эфире. Наконец, применяют групповые реакции, с помощью которых устанавливают присутствие классов химич. соединений (спирты, фенолы, кислоты, амины и проч.). Некоторые химич. реакции позволяют перевести малоразличимую смесь веществ в вещества с достаточно различными физич. свойствами, что дает возможность отделять их далее посредством дистилляции или растворением. Напр., можно превратить смесь поликарбоновых к-т и аминокислот в летучие сложные эфиры, сравнительно легко разделяемые. При идентификации выделенного чистого вещества большое значение имеет элементарный К. а., проводимый обычными методами для открытия углерода, водорода, азота, серы, галогенов, фосфора, мышьяка и металлов, а также испытание основных физич. свойств (темп-р плавления и кипения, растворимости и определение молекулярного веса). См. также Элементарный анализ, Функциональный анализ. [c.252]


    НИИ или при присоединении серы к соответствуюашы эфирам или эфироамидам арилфосфонистой кислоты, последние же образуются при реакции спиртов, фенолов и меркаптанов с арилди-хлорфосфинами в присутствии акцепторов хлористого водорода  [c.575]

    Исследуя совершенно различные типы реакций. Сан Филиппо с сотр. [586, 1194] получили высокие выходы в реакции расщепления сложноэфирных связей избытком КОг в присутствии каталитических количеств ( /з моля) 18-крауна-б при энергичном перемешивании в бензоле от 8 ч и редко до 140 ч и последующей обработкой водой. Оказалось, что такое расщепление на спирт и кислоту проходит со многими сложными эфирами первичных, вторичных и третичных спиртов, а также фенолов и тиолов. Также расщепляются фосфаты. При использовании в качестве растворителя ДМСО время реакции сокращается. Возможность разрыва связи кислород—алкил в результате воздействия супернуклеофила рассматривалась, но была отвергнута, по крайней мере для вторичных спиртов, так как наблюдалось обращение конфигурации на 99% [586]. Простые амиды и нитрилы не реагируют. [c.395]

    Многие вещества замедляют или ингибируют процесс автоокисления. К числу веществ, сильно ингибирующих окисление изопропилбензола, относятся прежде всего фенолы, кислоты, гиофенолы, спирты, амины. Действие их представляет довольно сложный процесс и заключается, вероятно, в обрыве цепи. По мнению многих исследователей, первой стадией реакции ингибирования является отрыв подвижного водорода от кислорода или азота ингибитора церекисньгм радикалом по схеме  [c.297]

    Соответственно фосфорсодержащие органические соединения получают по реакции органических веществ с такими реагентами, как РаЗз, РаЗд, Р0С1а, РЗС1з и др., обладающими чрезвычайной активностью в реакциях с органическими кислотами, спиртами, фенолами и алкилфенолами, терпенами и т. д. [c.156]

    Благодаря наличию реакционноспособных кислородных грушшро-вок в молекулах аренфорлальдегидных олигомеров последние легко вступают в реакции с друлши соединениями (кислоты, спирты, фенолы и др.) [42]. [c.10]

    Анализ ИК-спек гров окисленных образцов ятелыюго топпива показал наличие сложной с.меси кислородсодержащих ароматических структур, состояитих из гидропероксидов, спиртов, фенолов, ароматических и арилароматическнх. эфиров (ароматических альдегидов и карбоновых кислот), сложных эфиров ароматических карбоновых кислот, которые легко. могут вступать в реакции уплотнения (этерификации, конденсации, полимеризации) с образованием высокомолекулярных соединений, часть которых коагулирует в нерастворимые соединения, вызывая осадко- и смолообразование [6]. [c.117]

    К винилогам карбонильных соединений, как и к карбонильным соединениям, могут присоединяться вещества со свободной электронной парой (например, аммиак, амины, спирты, фенолы, меркаптаны, некоторые минеральные кислоты) или С—Н-кислотные соединения (синильная кислота, альдегиды, кетоны, р-дикарбо-нильные соединения и их аналоги). Реакции веществ первой группы катализуются как щелочами (которые активируют основание), так и кислотами (они активируют винилог карбонильного соединения).  [c.203]

    Этот синтез похож на синтез Гаггермана — Коха, но в данном случае формилгалогенид выделяется перед введением в реакцию. Фтористый формил формилирует ароматические углеводороды (а также спирты, фенолы, соли карбоновых кислот, тиоспирты и первичные и вторичные амины) [10]. Этот реагент можно получить из муравьиной кислоты и кислого фторида калия или из смешанного ангидрида уксусной и муравьиной кислот и безводного фтористого водорода. В качестве катализатора следует предпочесть трехфтористый бор выходы с ароматическими углеводородами колеблются от 56 до 78%. [c.50]

    Простейшими превращениями ортоэфиров можно считать реакции переэтерификации, приводящие к частичной или полной замене алкоксильных или тиоалкильных групп ортоэфира новыми 1К-окси- или К-меркаптогруппа[ми. Рассматриваемые реакции происходят при действии на ортоэфиры спиртов, фенолов, карбоновых кислот, ангидридов карбоновых кислот и меркаптанов и являются типичным примером нуклеофильного замещения при насыщенном атоме С. [c.33]

    В качестве растворителей при роданировании применялись бензол, бромбензол, четыреххлористый углерод, хлороформ, эфир, дибромэтан, сероуглерод, петролейный эфир, уксуснометиловый эфир, нитрометан и безводные муравьиная и уксусная кислоты. При низкой температуре можно применять такие растворители, как насыщенные растворы ро-данистных солей щелочных металлов в метиловом спирте [17, 63] или ацетоне [64]. При роданировании аминов в среде нейтрального растворителя, иапример метилового спирта, выходы на 20—30 /д выше, чем прп проведении реакции в уксусной кислоте. Применение нейтральных растворителей также препятствует образованию тиазолов. Применение эфира обычно дает неудовлетворительные результаты, потому что он подвергается разложению и потому, что часть амина выпадает в осадок в виде роданистой соли [1, 20]. С другой стороны, при роданировании фенолов в уксуснокислых растворах получаются, повидимому, лучшие выходы, чем в нейтральных растворителях. [c.239]

    В работе Халленгера [9] описано получение /-2-амино-4-(ме-тилтио-С )-масляной кислоты по этому методу с изотопным выходом 48%. При проявлении бумажной хроматограммы 80%-ным фенолом или смесью бутиловый спирт — уксусная кислота — вода получаются два пятна, окрашиваемых нингидрином. Они соответствуют метионину и его сульфоокиси, которая получается в результате реакции окисления в процессе хроматографирования. Как d-, так и /-формы получаются из соответствующих оптически активных исходных веществ в 1 % -ном водном растворе [а]о +7,75° и —7,6°. Полученные вещества анализировались в виде пикратов. [c.211]

    В табл. УА (реакции р-пропиолактона) принят следуюпц произвольный порядок расположения реагентов вода, спирт фенолы, тиофенолы, меркаптаны и другие серусодержащие орг нические соединения, аммиак и амины, третичные амины, сш неорганических и органических кислот, неорганические и орган] ческие кислоты и их производные, магнийорганические соедини ния, соединения с активной метиленовой группой и, наконец, в< остальные реагенты. [c.420]


Смотреть страницы где упоминается термин Реакции со спиртами, фенолами и кислотами: [c.20]    [c.25]    [c.98]    [c.463]    [c.15]    [c.287]    [c.469]    [c.172]    [c.350]    [c.291]    [c.261]    [c.51]   
Смотреть главы в:

Методы элементоорганической химии Кн 2 -> Реакции со спиртами, фенолами и кислотами




ПОИСК





Смотрите так же термины и статьи:

Спирто-кислоты

Феноляты кислот



© 2025 chem21.info Реклама на сайте