Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реагенты разложение водой

    Обычно взаимодействие ацетиленидов меди с нуклеофильными реагентами осуществляют в среде пиридина или диметилформамида, реже — в. среде анизола, однако ацилирование ацетиленидов меди хлорангидридами в этих растворителях не протекает. Так, при взаимодействии фенилацетиленида меди с бензоилхлоридом или терефталилхлоридом в пиридине образуется растворимый комплекс, который при разложении водой выделяет исходный ацетиленид меди. Те же результаты были получены при взаимодействии ацетиленидов меди с ацетилхлоридом. При проведении реакции фенилаце- [c.46]


    Еще одним способом получения водорода из воды является применение термохимических циклов, где разложение воды идет в несколько стадий с использованием реагентов, которые теоретически в конце цикла полностью возвращаются в исходное состояние. Например  [c.131]

    В нефтепереработке основные проблемы коррозионного износа связаны с наличием сероводорода, образующегося при разложении сероорганических соединений нефти и присутствующего практически во всех процессах вместе с хлористым водородом, выделяющимся при пиролизе содержащихся в нефти хлористых солей (в виде эмульсии высокоминерализованной пластовой воды). Сероводород образуется также при разложении хлорорганических соединений. Кроме того, коррозия вызывается охлаждающей оборотной водой, содержащей кислород, растворенные газы, соли, примеси продуктов нефтехимпереработки и др. Различные коррозионные разрушения вызывают также реагенты, используемые при переработке сырья растворы щелочей, серная кислота, фенол, фурфурол, кетоны и т. д. [c.72]

    Разложение реагентов Гриньяра водой [c.137]

    Сегодня водород широко применяют в химической, нефтеперерабатывающей и других отраслях промышленности в качестве сырья и реагента. Но как топливо его используют только в ракетной технике. Большую часть производимого в мире водорода получают на базе природного газа и нефтепродуктов. Производство водорода путем газификации угля пока не играет заметной роли, но быстро развивается и будет, очевидно, широко использоваться для обеспечения потребностей различных производств синтетических жидких топлив. Если рассматривать более отдаленную перспективу, то ископаемые топлива вряд ли смогут обеспечить достаточные масштабы производства водорода. Поэтому в качестве перспективного направления получения водорода для энергетических целей могут рассматриваться различные методы разложения воды. [c.130]

    В настоящее время трудно назвать область науки или народного хозяйства, в которой для решения общих и конкретных задач не применялась бы физическая химия. Являясь в основном теоретической наукой, она решает многие практические задачи, непосредственно относящиеся к проблемам научно-технического прогресса энергетическая проблема, решение которой может осуществиться расширением сети атомных электростанций или использованием в качестве топлива газообразного водорода с его предварительным получением при разложении воды под действием падающих квантов света проблема интенсификации химических и фармацевтических производств путем увеличения скорости химических реакций повышение избирательного превращения реагентов в полезные продукты с уменьшением потерь и отходов производства, что связано с изучением и выбором катализаторов. Одно из важных направлений применения катализаторов — фиксация азота из воздуха. С помощью комплексных соединеиий переходных металлов удалось восстановить азот до аммиака, что имеет большое значение для народного хозяйства. Применением катализаторов удалось значительно сократить продолжительность процесса получения многих синтетических фармацевтических препаратов Важной нерешенной проблемой остается выбор системы растворителей для эффективной экстракции лекарственных веществ нз растительного сырья. [c.8]


    При исследовании многих радиационно-химических реакций, в газовой фазе сделано важное наблюдение, согласно которому присутствие инертного газа часто не оказывает влияния на величину MIN даже если парциальное давление инертного газа. столь велико, что большая часть ионизации должна происходить в нем, а не в реагирующем веществе [6]. Так, на разложение воды и двуокиси углерода и на полимеризацию ацетилена не влияет присутствие азота или ксенона под значительным давлением. Здесь возможны различные объяснения. Линд с сотрудниками считают, что образуются смешанные сольватные оболочки. В тех случаях, когда инертный газ В имеет более высокий потенциал ионизации 1ц, чем потенциал реагирующего вещества А (/а), может происходить перенос заряда к реагенту [7]  [c.54]

    Первый кинетический порядок реакции еще не служит доказательством того, что она идет по механизму е1. Так, например, разложение четвертичной соли диметил-р-(п-нитрофенил) -этиламина в водном растворе является реакцией первого порядка. Тем не менее эта реакция, без сомнения, идет по механизму е2, так как ее скорость резко возрастает при добавлении более сильного нуклеофильного реагента, чем вода  [c.117]

    В целом термохимическое разложение воды является замкнутым циклом, так как все исходные реагенты отделяются от продуктов реакции и возвращаются в цикл, кроме воды, расходуемой на образование водорода и кислорода. Максимальная температура реакций (реакция г) не превышает 700°С н может быть обеспечена теплоносителем на выходе из ядерного реактора на уровне 800— 900 С. [c.82]

    При необходимости знать точную концентрацию алюмогидрида лития ее определяют либо газометрическим способом (измерением объема водорода, выделившегося при осторожном разложении точно отмеренного объема реагента раствором воды в ТГФ), либо иодометрическим способом (добавлением избытка бензольного раствора иода и обратным титрованием непрореагировавшего иода тиосульфатом, см. 2.8). [c.115]

    Подготовка растворов к полярографированию (основная методика). Раствор минерализата навески ЭОС из сосуда для разложения водой или фоновым электролитом переводят в мерную, колбу. Вместимость ее выбирают с расчетом создания концентрации катиона, оптимальной для полярографии, т. е. равной 1-10 —М при содержании примерно 1,5 мг металла в навеске ЭОС. Обычно вместимость колбы составляет 50 мл. При приготовлении щелочных растворов для контроля момента нейтрализации сернокислого раствора используют индикатор фенолфталеин (1%-ный спиртовый раствор). Во все растворы добавляют водный раствор желатины в виде 1 %-ного водного раствора. После создания необходимой кислотности и добавления комплексообразующих реагентов объем раствора доводят до метки водой, перемешивают и оставляют не менее чем на 1 ч для завершения комплексообразования. Раствором ополаскивают и заполняют полярографическую ячейку, укрепляют ее под р. к. э. так, чтобы конец капилляра находился в центре раствора. Ячейку с помощью электролитического мостика и промежуточного сосуда с насыщенным раствором КС1 соединяют с н.к. э. При необходимости кислород удаляют продуванием чистого азота через раствор в ячейке с помощью специальной капиллярной трубки с такой скоростью, чтобы пузырьки газа можно было считать. Время продувания — 10 мин для водных и 15 мин для водно-органических растворов. В аналогичных условиях подготавливают стандартный раствор. Некоторые отклонения от описанной основной методики будут указаны ниже в частных методиках определения металлов. [c.212]

    Разложение реагентов Гриньяра водой также приводит к получению алканов. Аналогично ведут себя органические соединения лития (см. разд. 15.1.4). [c.137]

    Благодаря низкому молекулярному весу алюмогидрида лития (37,95) и тому, что один моль его восстанавливает четыре моля альдегида или кетона, алюмогидрид лития является очень удобным и экономичным восстановителем. Если, как это часто делают, применять двух-четырехкратный избыток реагента, разложение активного гидрида водой небезопасно, так как выделяется большое количество водорода. В этом отношении более удобен этилацетат, который, восстанавливаясь, дает два моля этилового спирта, не мешающего выделению основного продукта реакции. [c.326]

    Весь термохимический процесс разложения воды представляет собой замкнутый цикл, так как все исходные реагенты отделяются от продуктов реакции и возвращаются в цикл, за исключением воды, расходуемой на образование На и Ог- Максимальная температура реакций не превышает 700° С и может быть обеспечена теплоносителем на выходе из атомного реактора на уровне 800—900° С. [c.233]

    Это количество теплоты выделяется при разложении 1 моля пероксида водорода на 1 моль воды и 1/2 моля газообразного кислорода, т.е. в расчете на 1 моль реагента. Если удвоить все коэффициенты в уравнении реакции, то придется удвоить и теплоту реакции, поскольку она будет относиться [c.89]


    Аппарат ИТН имеет общую высоту 10 м и состоит из двух частей нижней реакционной и верхней сепарационной. В реакционной части находится перфорированный стакан, в который подают азотную кислоту и аммиак. При этом, за счет хорошей теплоотдачи реакционной массы стенкам стакана, реакция нейтрализации протекает при температуре более низкой, чем температура кипения кислоты. Образующийся раствор нитрата аммония закипает и из него испаряется вода. За счет подъемной силы пара парожидкостная эмульсия выбрасывается из верхней части стакана и проходит через кольцевой зазор между корпусом и стаканом, продолжая упариваться. Затем она поступает в верхнюю сепарационную часть, где раствор, проходя ряд тарелок, отмывается от аммиака раствором нитрата аммония и конденсатом сокового пара. Время пребывания реагентов в реакционной зоне не превышает одной секунды, благодаря чему не происходит термического разложения кислоты и нитрата аммония. За счет использования теплоты нейтрализации в аппарате испаряется большая часть воды и образуется 90% -ный раствор нитрата аммония. [c.266]

    В оборотной воде всегда присутствуют механические примеси, поступающие в систему с добавочной водой и с воздухом на градирнях, а также органические вещества, которые используются микроорганизмами в качестве углеродного и азотистого питания. Эти вещества поступают в воду за счет утечек продуктов из технологического оборудования, обработки воды реагентами, разложения водных организмов, заносимых с добавочной водой из источника, и др. В результате в оборотной воде достигается высокая степень концентрирования загрязнений, в том числе и взвешенных веществ. При этом концентрация последних в оборотной воде, например нефтехимических предприятий, превосходит на 20-307о произведение концентрации этих веществ в добавочной воде на коэффициент упаривания. Избыток образуется за счет продуцирования взвеси в самой системе - частицы биологического происхождения и продукты коррозии. [c.242]

    При кипячении следует время 01 времени добавлять воду, поддерживая общий объем раствора приблизительно постоянным, так как увеличение концентрации серной кислоты но мере испарения воды может усилить ее действие как обезвоживающего реагента и привести к частичному разложению щавелевой кислоты по схеме [c.225]

    Разложение //-кислотами, в том числе нуклеофильными реагентами с подвижным атомом водорода (карбоновыми кислотами, водой, спиртами, аммиаком, аминами, амидами и т. д.)  [c.343]

    В связи с особой актуальностью охраны окружающей среды от загрязнения химическими реагентами большое внимание уделяется изучению способности ПАВ к биологическому разрушению в водной, почвенной и других средах. Биологическим разложением называют любое изменение (трансформацию) молекулы химического соединения, ведущее к упрощению структуры и изменению его различных свойств (физико-химических, токсикологических и др.) под влиянием живых организмов. Различают первичное и полное биологическое разложение. Так, гидрологическое отщепление от молекулы ПАВ активной сульфогруппы приводит к утрате веществом поверхностной активности, а с ней и способности к пенообразованию. В данном случае приемлемое для окружающей среды биоразложение совпадает с первичным разложением. Полное биоразложение — это распад вещества до простых неорганических соединений с образованием воды, углекислого газа, азота, аммиака и др. Известно, что алкилсульфаты разрушаются в результате гидролиза с образованием соответствующих спиртов которые окисляются до жирных кислот. В свою очередь последние подвергаются деструкции путем а- и р-окисле-ния. Вторичные жирные спирты (ВЖС) могут разлагаться по такому механизму ВЖС- спирт->кетон->оксикетон- дион альдегид-V кислота. Деструкция анионных ПАВ,, ведущая к потере поверхностной активности, может происходить либо путем отщепления от молекулы вещества гидрофильной группы, либо в результате последовательного окисления алкильного радикала. Отщепление гидрофильной, группы у синтетических алкилсульфатов, алкилсульфена-тов и алкиларилсульфенатов осуществляется в результате каталитического воздействия ферментов сульфатаз. [c.93]

    Кристаллизация в выпарных аппаратах затрудняется зарастанием греющих поверхностей кристаллизующейся солью и накипью, образующейся из продуктов термического разложения примесей, вносимых в раствор с технической водой. Инкрустации образуются и в случае присутствия примесей, растворимость которых уменьшается с повышением температуры (некоторые сульфаты, силикаты и др.). Отложение веществ на греющей поверхности происходит потому, что температура ее выше, чем в массе раствора, и интенсивность пересыщения больше. Для удаления солевых инкрустаций и накипи проводят периодические продувки греющих элементов, промывку их водой и химическими реагентами, механическую очистку. Для уменьшения инкрустаций и накипи применяют скоростные греющие камеры с быстрым движением раствора вводят в него антинакипины, экранирующие поверхность металла и препятствующие прилипанию к ней твердых частиц добавляют к раствору кристаллическую затравку из образующего накипь вещества, на которой осаждается вновь выделившееся вещество, что понижает его концентрацию в растворе. [c.253]

    В принципе можно выбрать такую силу тока в электролитической цепи, чтобы она составляла менее 1 % величины диффузионного предельного тока. В этом случае мешающие реакции начинают протекать только после того, как прореагировало 99% определяемого вещества. Попрешность составляет, таким образом, менее —1%. Но проведение анализа при небольшой силе тока требует больших затрат времени. Поэтому обычно поступают по-другому в анализируемый раствор вво-.дят довольно большую концентрацию вспомогательного ре-.агента, окислительно-восстановительный потенциал которого немного больше окислительно-восстановительного потенциала определяемого иона. К началу электролиза определяемый ион опять восстанавливается или окисляется. В соответствии с уменьшением концентрации определяемого иона у поверхности электродов электродный потенциал снова возрастает, но только -ДО тех пор, пока его значение ие станет равным значению потенциала иона вспомогательного реагента. После этого окисляется или восстанавливается реагент. Поскольку его концентрация намного больше концентрации определяемого иона, обеспечивается дополнительная подача вещества путем диффузии к поверхности электродов. Электродные потенциалы остаются постоянными (не происходит разложения воды 100%-ный выход ло току), остается постояиным значение Яг, а следовательно, и г. Диффундирующий от электродов вспомогательный реагент, являющийся окислителем или восстановителем, реагирует в растворителе с определяемым ионом, и, таким образом, действует только как посредник. [c.274]

    Образование в равновесной смеси молекулярного ацетилена и металлической соли энола задерживает реакцию и, возможно, поэтому не энолизирующиеся бензальдегид и бензофенон дают более высокий выход спиртов. Ацетиленовые спирты и гликоли выделяются из реакционной смеси при осторожном разложении водой алкоголята. Приведенные реакции аналогичны синтезу циангидринов путем присоединения цианидов щелочных металлов к альдегидам и кетонам или синтезу спиртов из алкильных и арильных гриньяровских реагентов при действии на альдегиды и кетоны. При помощи этого метода можно получить из формальдегида первичные спирты, из высших альдегидов вторичные спирты, из кетонов третичные спирты. Очевидно, что высшие альдегиды и несимметричные кетоны дают рацемическую смесь правых и левых форм спирта, с асимметричным атомом углерода. Ацетиленгликоли, полученные из высших альдегидов и несимметричных кетонов, имеют два асимметричннх атома углерода и поз-тому образу  [c.132]

    В качестве химического реагента используют твердый пятихлористый фосфор РС1б или фосфорный ангидрид Р2О5, которые заключаются в металлическую цилиндрическую капсулу, выполненную из металлической магниевой фольги. Эта капсула полностью растворяется в продуктах реакции реагента с водой, выделяющейся при разложении гидратов. [c.137]

    Порядок прибавления реагентов. Обычно реакцию диазотирования проводят следующим образом. Амин растворяют в разбавленной минеральной кислоте и к полученному раствору соли амина при охлаждении (около 0°С) и перемешивании прибавляют охлажденный 20... 25%-ный раствор соли азопистой кислоты в воде. Конец диазотирования определяют по иодкрахмальной бумаге после нанесения капли раствора на бумаге должно появиться темно-синее окрашивание. Реакционный раствор должен иметь слегка желтую окраску и быть прозрачным. Вспенивание раствора указывает на то, что идет разложение азотистой кислоты. Появление окраски раствора или образование окрашенного осадка свидетельствует о протекании побочной реакции образования азокрасителей. [c.178]

    Возможности такой системы на этом не исчерпываются. Двухвалентный, двухзарядный ион железа Ре можно превратить обратно в Ре +. Последний процесс, хотя он осуществляется и самопроизвольно, может идти и при поглощении энергии света, сопряженном с разложением воды. В самом деле, превращение Ре + в Ре сводится к отдаче электрона какому-либо подходящему акцептору. В разбавленном водном растворе возбужденный ион двухвалентного железа может отдать электрон даже протону, и тогда образуется свободный радикал Н — атом водорода. Радикал этот, естественно, неустойчив и реагирует с другим таким же радикалом (с образованием молекулы водорода На) ИЛИ с каким-л.ибо иным подходящим реагентом. Напомним, что в нащей системе присутствует кислород (см. процесс [12]) тогда свободный радикал Н вступает в реакцию с кислородом (Н+Ог- НОг) затем образовавшийся НО2 вступит в реакцию с еще одним Н, и мы снова получим Н2О2. Знаменательно, что перекись водорода образуется в качестве промежуточного продукта в рассмотренных выше противоположных процессах. Перекись водорода разлагается с образованием Н2О и О2 и снова по чисто стехиометрическим соображениям в реакцию окисления должны вступать четыре иона Ре +, поглощаться четыре кванта света, разлагаться четыре молекулы воды  [c.111]

    На промыслах вместе с нефтью во все больших количествах добывается высокоминералнзованная вода, которая после отделения от нефти содержит различные механические примеси, нефть, а также различные химические реагенты, используемые нрн заводнении. Многие из них токсичны. Продукты разложении токсичных веществ иногда так же или даже более токсичны. Адсорбированные соединения могут быть вынесены на но-иер.чность пластовыми водами, употребляемыми для питья или п лечебных целях (минеральные источники). [c.204]

    Во избежание медленного катализа твердым хлористым алю-миние этот активный каталитический ком1Плеке целесообразно готовить предварительно и потом подавать на реакцию. Кроме НС1 его образованию способствуют иебольшне добавки воды или соответствующего хлорироизводного, роль которых состоит в генерации НС1. Более приемлемо использовать НС1 или R 1, так как вода дезактивирует часть катализатора, разлагая его. По этой же причине необходимо хорошо осушать реагенты и следить, чтобы в реакционную смесь пе попадала вода, способная вызвать бурное разложение комплекса. Другими катализаторными ядами являются многие сернистые соединения и аммиак, в меньшей степени — диены и ацетилен. Следовательно, жидкая реакционная масса при алкилировании с хлористым алюминием состоит из двух фаз каталитического комплекса и углеводородного слоя. [c.243]

    П1-26. Для изучения кинетики реакции разложения неустойчивого газообразного органического вещества в толстостенный стеклянный реактор, аналогичный реакционному сосуду, который описан в задаче Н1-25, при 0° С вводят смесь объемом 1,1 мл, содержащую 73% реагента и 27% инертного вещества. При этой темпера туре заметного изменения объема смеси после выдержки в течение 1 ч не наблюдается Реакционный сосуд помещают в ванну с кипящей водой и в различное время регистри руют объем смеси (табл. 13) при постоянном абсолютном давлении 1000 мм рт. ст. [c.100]

    Хлорорганические соединения, содержащиеся в небольшом количестве, растворимы в нефти и не вымываются водой в процессе обессоливания на ЭЛОУ. Для их удаления при обессоливанин необходимо применять реагенты, которые разлагают хлорорганические соединения и превращают их в водорастворимые вещества. Лабораторными исследованиями установлено, что щелочь при определенных условиях способствует частичному разложению хлорорганических соединений с образованием хлорида натрия, и тем самым снижает количество коррозионного хлористого водорода, выделяемого при перегонке нефти. Образовавшийся хлорид натрия вымывается водой на ЭЛОУ. [c.123]

    Образование нересыщенного раствора илн нара при. химической реакции может происходить в результате химического взаи.модей-ствия двух исходных веществ или разложения одного вещества. К реакциям первого тина относятся получение элементарных металлов, оксидов, гидроксид.ов и других соединений металлов из их растворимых солей н соответствующих реагентов, синтез солей аммония из аммиака и парообразных кислот, гидратация и гидролиз различит,IX иоиов н соединений как в жидкой водной среде, так и парами воды в воздухе, К реакциям второго тнна относится, наиример, фотохимическое разложение некоторых металлорганн-ческих С едниеипй. [c.191]

    Сырье — сжиженная смесь аммиака и ацетилена, ацетон и раствор катализатора целочной природы поступает в реактор 1, температура в котором находится в пределах 10—40 °С (давление 2,0—2,5 МПа). Реакцию ведут при некотором избытке аммиака для того, чтобы исключить образование продуктов конденсации ацетона. Реакционная смесь направляется в стоппер-реактор 2, куда подается специальный реагент, дезактивирующий катализатор и прерывающий таким образом процесс. Далее продукты реакции поступают в газосепаратор 3, где давление дросселируется до атмосферного. Выделяющийся в виде паров аммиак совместно с непрореагировавшим ацетиленом компримируется и возвращается в реактор ], а смесь жидких продуктов подается на ректификационную колонну 4. В качестве погона этой колонны отбираются остатки непревращенного ацетона, также возвращаемого на синтез. Кубовый продукт направляется на колонну выделения ацетиленового спирта 5. Поскольку вместе с катализатором и стоппером в систему вводилась вода, синтезированный продукт отгоняется в виде гомогенного водного азеотропа, т. е. в сравнительно мягких условиях. Выделенный азеотроп ацетиленового спирта непосредственно направляется на гидрирование. Из куба колонны 5 выводится водный раствор продуктов разложения катализатора. [c.382]

    Мочевину, или карбамид, 0(NHj)2 — амид карбаминовой кислоты NHj OOH — производят из аммиака и двуокиси углерода под давлением 180—200 атм при 185—200 С. В результате взаимодействия реагентов в колонне синтеза образуется плав, состоящий из 34—35% мочевины, 18—19% карбамата аммония NH2 OONH4, 34—35% NH3 и 10—11% воды. В газовой фазе находятся часть не-прореагировавших аммиака и двуокиси углерода, а также небольшие количества водяного пара и продуктов реакции. Полученный плав подвергают дистилляции в одну или две ступени с целью разложения карбамата с образованием мочевины, а также аммонийных солей и отгонки аммиака, двуокиси углерода и водяного пара. [c.446]

    Метионовая кислота очень устойчива к действию высоких температур, а также кислых и щелочных реагентов [447]. При нагреванпи выше 160° она частично разлагается, но в высоком вакууме ее можно перегнать практически без разложения [437в]. Нагревание кислоты с водой, взятой в количестве 20% от ее веса, при температуре 220—270° и давлении 15—20 мм ведет к разложению с образованием метансульфокислоты и серной кислоты. [c.176]

    При бурении сероводород может поступать в скважины как в виде сероводородной водь [, так и в газообразном состоянии, чаще в виде примесей природных углеводородных газов. Он может образовываться в буровом растворе вследствие термического разложения серосодержащ1[х химических реагентов, применяемых для обработки раствора. [c.260]

    При определенных условиях подачи тока на электродах электролизера возникают пузырьки газа, обеспечивающие реализацию электрофлотации, так, нахгример, если ввести в воду безбалластный реагент — нитрат аммония — в электролизере произойдет его разложение на азот и воду, что увеличивает количество флотирующего агента и интенсифицирует процесс (табл. 1.3). [c.17]

    Электрохимические (кулоно-, кондукто-, потенциометрические, полярографические) методы могут быть успешно применены для определения содержания воды. Наиболее распространены кулонометрические и меньше кондуктометрические. Кулонометрические методы основаны на способности чувствительного к воде реагента образовываться на электроде ячейки, а также на измерении продуктов реакции при электролизе. В этом случае массу воды определяют по количеству тока, пошедшего на электрохимические процессы в соответствии с законом Фарадея. Реально применяют метод кулонометрии, основанный на взаимодействии воды с тонкой пленкой пятиокиси фосфора. Механизм процесса заключается в электрохимическом разложении образовавшейся метафосфорной кислоты. При электролизе опять образуется исходная пятиокись фосфора, поэтому химический и электрохимический процессы протекают совместно и воду можно определять непрерывно с высокой разрешающей способностью и чувствительностью (до 0,001 %). Основным недостатком метода является необходимость применения для экстракции воды предварительно осущенного инертного газа. [c.305]

    Разрабатываются так называемые механохимические методы интенсификации гетерофазнь1Х процессов. Активирование реагентов контактирующих твердой и жидкой фаз достигается действием мощного механического импульса с существенным нарушением поверхности кристаллической решетки и кавитационным эффектом в жидкости. Например, при обычной для "промышленных реакторов мощности 0,8—1,5 кВт перемешивания 1 м суспензии апатитового концентрата в воде не наблюдают результатов их химического взаимодействия. При создании мощного механического импульса 20—50 кВт на 1 м суспензии проявляется механохими-ческое разложение фосфата с образованием фосфатных и фтористых продуктов реакции. Механизм воздействия таких импульсов пока еще недостаточно ясен. [c.198]

    В связи с тем, что загрязнение воды ПАВ в комбинации с другими соединениями имеет широкое распространение, охватывая многочисленные водоемы страны, факт усиления токсичности последних имеет, несомненно, важное гигиеническое значение. Так, на практике при попадании в воду относительно большого количества химических загрязнителей присутствие ПАВ значительно увеличивает опасность как острого, так и хронического отравления. В опытах показана также возможность синергических эффектов при действии на запах (привкус) воды комбинации различны.к веществ с ПАВ. Результаты модельных исследований позволили выяснить определенные закономерности в процессах выноса загрязнений из почвы атмосферными осадками и поливными водами в водные объекты, а также сорбции их песчаными грунтами в процессе фильтрации воды,- содержащей комбинации веществ. Установлено, в частности, что ПАВ увеличивают почвенный транспорт ряда соединений, изменяя условия адгезии и сорбции их. При значительном суммарном загрязнении открытых водоемов, в зависимости от химической природы веществ, может наблюдаться заметное ухудшение кислородного режима. Установлено, что ПАВ существенно замедляют динамику трансформации ряда реагентов, отличающихся незначительной или умеренной стабильностью. Так, время полу-разложения симазина, аммиачной селитры и аммофоса в присутствии хлорного сульфонола составляло соответственно 3,9 23,0 и 33,0 суток против 2,И 18,0 и 23,0 суток в контрольной пробе. Неблагоприятные последствия комбинированного загрязнения воды комплексом веществ в присутствии ПАВ связаны также с ухудшением условий самоочищения водоемов от энтеропатогенных микроорганизмов. В частности, в комплексе с аммиачной селитрой хлорный сульфонал обусловливал подавление сапрофитной микрофлоры и стимулировал развитие Salmonella typhymurium и энтеровирусов (52). [c.92]


Смотреть страницы где упоминается термин Реагенты разложение водой: [c.175]    [c.30]    [c.103]    [c.191]    [c.35]    [c.218]    [c.58]    [c.165]    [c.155]    [c.277]    [c.223]   
Органическая химия Том1 (2004) -- [ c.137 ]




ПОИСК







© 2024 chem21.info Реклама на сайте