Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции обнаружения каталитические

    Если проявление каталитической активности цеолитов с ионами или атомами переходных элементов в реакциях окислительно-восстановитель-ного типа можно было предвидеть, то обнаружение такой активности у щелочных и щелочноземельных форм различных цеолитов, т.е. у катализаторов, имеющих в своем составе катионы непереходных элементов, было совершенно неожиданным. В 1967-1968 гг. в нашей лаборатории впервые было обнаружено, что цеолиты с катионами непереходных металлов активны в гидрировании олефиновых и ароматических углеводородов [23-26]. В дальнейшем гидрирующая активность цеолитов подтверждена также в работах других исследователей [27-29]. Факт обнаружения каталитической активности катионных форм цеолитов в реакциях гидрирования имеет в [c.6]


    Обнаружение каталитическими реакциями. Очень чувствительный метод обнаружения молибдата, а также вольфрамата и [c.101]

    В числе представленных на конференцию работ по катализу твердыми основаниями имеется работа Е. А. Фокиной и автора настоящего доклада по изучению каталитических свойств окиси кальция. Было подробно изучено разложение изопропилового спирта в адсорбированном слое на СаО в - вакуумных условиях. Реакция, так же как и в динамических условиях, протекает в сторону дегидрирования спирта. Было изучено разложение циклогексана на окиси кальция и обнаружено, что оно протекает с удовлетворительной скоростью при 350—450°. В продуктах реакции обнаружен водород. [c.274]

    Высокочувствительные каталитические реакции обнаружения элементов [c.36]

    Опыт 4. Каталитическая реакция обнаружения иона палладия [c.36]

    Опыт 5. Каталитическая реакция обнаружения следов кобальта [c.37]

    Таким образом, обнаруженные каталитические эффекты выявляют своеобразие механизмов гомогенного и гетерогенного катализа в разряде, которое состоит в смещении стационарного состояния вследствие неодинакового влияния на скорость образования и разложения продуктов реакции. [c.154]

    При разработке катализаторов приходится решать задачи двух типов. Задачи первого типа состоят в подборе нового (для данной реакции) активного компонента катализатора. Задачи второго типа заключаются, в совершенствовании катализатора с известным активным компонентом. Они на практике встречаются несравненно чаще, чем первого. Действительно, выбор активного компонента катализатора того или иного химического процесса, как правило, предопределен результатами выполненных ранее сравнительных исследований практически всех перспективных в этом отношении веществ. Неожиданное обнаружение неизвестного ранее вещества, обладающего большей каталитической активностью, чем известные активные компоненты катализаторов данного типа, является теперь относительно маловероятным событием. [c.4]

    Открытие явления автоколебания скорости гетерогенных каталитических реакций имеет важное значение для теории и практики гетерогенного катализа. Обнаруженные в гетерогенном катализе автоколебания скорости показывают, что каталитические свойства поверхности изменяются под действием протекающего каталитического процесса, и состав поверхности может быть нестационарный по отношению к составу газовой фазы. Автоколебания скорости реакции существуют только вдали от равновесных условий и обусловлены тем что механизм гетерогенных каталитических реакций может быть разным вблизи и вдали от равновесных условий. [c.315]


    Отметим, что образуюш,ийся в ходе каталитических реакций превращения углеводородов (дегидрирования, гидрокрекинга и т. д.) кокс может снижать активность катализатора в отношении основной реакции как за счет хемосорбции самого кокса на активных центрах и их дезактивации, так и в результате изменения макроструктуры катализатора, блокирования устьев пор и активной поверхности. Открыт новый вид разрушения катализатора при дендритном механизме образования кокса, названный каталитической эрозией [24] при росте дендритов на никелевой пластине последняя подвергается разрушению. Частицы никеля уносятся первичными дендритами, а пластина убывает в массе вплоть до полного разрушения. Унос отдельных компонентов обнаружен также в случае эрозии алюмохромового катализатора дегидрирования бутана. Однако пока еще не доказано, что этот механизм влияния кокса на наблюдаемую активность катализаторов является доминирующим более вероятно, что роль кокса сводится к усилению диффузионного торможения основной реакции в порах и на поверхности зерна (см. 5.4). [c.108]

    Изменение окраски обнаруживается легче, чем образование осадка. По сравнению с реакциями осаждения обнаруживаемый минимум для цветных реакций на один-два порядка ниже. В качестве метода концентрирования в цветных реакциях часто используют экстракцию. Столь же чувствительными являются каталитические реакции, в которых катализируемую реакцию используют для обнаружения катализатора. Так, ионы Си существенно ускоряют восстановление Ре(1П) тиосульфат-ионами. Применяя роданид-ионы в качестве индикатора, по быстрому исчезновению окраски можно сделать вывод о присутствии ионов меди. [c.52]

    Каталитические свойства ионов можно использовать для их обнаружения (см. стр. 45) и количественного определения. Условием последнего является пропорциональное увеличение скорости реакции в зависимости от концентрации катализатора. Это почти всегда имеет место при катализе в гомогенных системах (катализ посредством промежуточных реакций). При рассмотрении каталитических реакций чаще всего речь идет об окислительно-восстановительных процессах. Реакции выбирают так, чтобы их протекание можно было легко контролировать, например по изменению окраски. Нередко в исследуемый раствор добавляют еще второе, чаще всего органическое, вещество — активатор. Это позволяет уменьшить обнаруживаемый минимум. [c.89]

    Обнаружение новой полосы поглощения означает образование на поверхности промежуточного соединения. Однако наблюдение этой полосы еще не доказывает, что соответствующий промежуточный продукт важен для течения каталитической реакции. Так, инфракрасные спектры, полученные при адсорбции смеси ацетона и кислорода на окиси никеля, показывают наряду с полосами карбонильной группы наличие полосы окисленной энольной группы С—0 , а также карбоксильной группы [c.178]

    Спектры электронного парамагнитного резонанса (ЭПР). Метод ЭПР — чувствительный метод обнаружения неспаренных электронов. Метод основан на резонансном поглощении энергии веществом с неспаренными электронами в сильном магнитном поле под действием радиочастот. Метод ЭПР чрезвычайно перспективен при изучении элементарных актов адсорбции при изучении природы активных центров окисных катализаторов (индивидуальных и на носителях) при изучении строения металлосодержащих комплексных гомогенных катализаторов при изучении чисто радикальных реакций на твердых поверхностях при изучении действия ионизирующей радиации на катализатор и каталитические реакции при изучении металлических катализаторов на носителях (В. В. Воеводский и др.). Этот метод ЭПР может оказать существенную помощь при установлении природы и строения активных центров и выявлении механизма их взаимодействия с реагирующими веществами, а также при изучении активных промежуточных продуктов каталитических реакций. [c.180]

    При проведении химического анализа применение обычно находят быстрые реакции или соответствующим образом ускоренные медленные реакции. Однако непосредственно -для аналитических целей могут быть использованы также медленно протекающие реакции. Так, например, по результатам измерения скорости таких реакций можно вычислить исходные количества вступивших в реакцию веществ. Этот метод называется кинетическим методом анализа. Для обнаружения или определения ультрамалых количеств веществ можно использовать их способность каталитически ускорять медленные реакции. Так, например, хлорид серебра катализирует реакцию [c.40]

    Алюминий уменьшает скорость каталитической реакции окисления ализарина перборатом или перекисью водорода в присутствии кобальта. Это использовано для обнаружения алюминия с чувствительностью 0,1 мкг к (предельное разбавление 1 10 ) [918]. [c.29]

    В изучении свойств стабильных нуклеофильных карбенов центральное место занимают реакции с электрофилами, особенно с разнообразными соединениями металлов. Образование карбеновых комплексов металлов привлекает значительное внимание из-за их высокой стабильности (большей, чем стабильность известных комплексов с другими лигандами) и каталитических свойств этих соединений. Вместе с тем, обнаружен ряд новых реакций с органическими субстратами, которые стали возможны лишь благодаря работе с индивидуальными стабильными карбенами. Наиболее полно синтез и свойства стабильных карбенов изложены в обзорах [16, 17], более ранние данные по химии ГК приведены в статье [1]. [c.280]


    Для обнаружения марганца применяют реакции, основанные на изменении цвета исходных веш,еств, благодаря каталитическому действию иа них Мп(П) (табл. 11). [c.25]

    Для качественного обнаружения рения используются химические, физико-химические и физические методы. Среди химических методов применяется ряд реакций, выполняемых сухим путем. Для обнаружения и идентификации могут быть полезны цветные реакции с некоторыми органическими и неорганическими лигандами в водных и неводных средах, каталитические реакции, некоторые микрохимические реакции, основанные на образовании малорастворимых соедипепий. Однако многие химические методы обнаружения рения, как и большинства других элементов, мало специфичны. Поэтому в ряде случаев используются физико-химические и физические методы. Так, открытие следов репия может быть проведено полярографическим методом по каталитическим токам (до 10 М), радиоактивационным методом по характерным периоду полураспада и энергии у-излучения изотопов рения (до 10" %), спектральным (до 10" —10 %), рентгеноспектральным (до 5-10 г) и масс-спектрометрическим ( < 10" %) методами ио характерным аналитическим линиям. [c.68]

    Число каталитических реакций для золота еш е очень мало. Однако при их использовании золото может быть определено с высокой чувствительностью. Впервые каталитическая активность золота была замечена в 1937 г. на примере ускорения реакции восстановления серебра сульфатом железа(П) [1129]. Эту реакцию используют для обнаружения [1129] и фотометрического определения [527, 733, 1012] золота. Метод позволяет определять 10" — [c.166]

    Иногда используют восстановление S N -hoh b цинком, алюминием или магнием или окисление его перманганатом в цианид и сульфат [392]. Возможно обнаружение S N по каталитическому ускорению иод-азидной реакции [770]. [c.47]

    Поскольку можно считать доказанным каталитическое влияние аминов на реакцию 2,4-динитрохлорбензола с аминами, вполне логично предположить, что и другие основания, например гидроксил- и ацетат-ионы, способны катализировать эту реакцию. Возможность катализа гидроксил-ионом исследовалась в двух работах. Баннет и Пруитт, авторы первой из них [79], утверждают, что реакцию 2,4-динитрохлорбензола и пиперидина в смеси 50% диоксана и 50% воды не катализируют ни пиперидин, ни гидроксил-ион. Однако в более поздней работе [74] было достоверно показано, что н-бутиламин катализирует реакцию 2,4-динитрохлорбензола с н-бутиламином в той же системе растворителей. Кроме того, результаты этой работы, по-видимому, говорят в пользу предположения о том, что гидроксил-ион также играет роль катализатора. В обоих этих исследованиях трудность заключалась именно в обнаружении каталитического действия иона гидроксила, так как субстрат реагирует с этим ионом, образуя 2,4-динитрофенол, гораздо быстрее, чем с амином, давая Ы-замещенный анилин. [c.54]

    В соевой муке содержится энзим уреаза, каталитически ускоряющий гидролитическое разложение мочевины и биурета на аммиак и двуокись углерода, которые образуют карбонат аммония. Чувствительная реакция обнаружения уреазы и, следовательно, соевой муки, описана на стр. 594. Реакция основана на демаскировании уреазой никеля, связанного в растворе с биуретом в комплексный анион. Реакцию можно выполнять на капельной пластинке. Для этого достаточно нескольких миллиграммов соевой муки. Лучше всего обрабатывать каплю нейтральной или слегка щелочной суспензии исследуемого образца каплей щелочного раствора биуретного комплекса. После 10—15 мнн. стояния смесь обрабатывают каплей раствора диметилглиоксима. В присутствии уреазы выпадает красный осадок. [c.688]

    На реакции с бромом основан объемный способ определения арилборных кисл( т (Мельников с сотр., 1938 . Для этой реакции обнаружен положительный солевой эффект (Kuivila et al., 1951, 1952, 1954) она каталитически ускоряется основаниями и подавляется кислотами и, очевидно, идет по механизму электрофиль-ного замещения  [c.101]

    Пр -. гомогенном каталитическом разложении перекиси водорода был обнаружен еще один интересный эффект, Н. Н. Петин и Г. А. Богданов установили, что иногда при совместном действии двух катализаторов суммарный эффект намного превышает сумму действия каждого из катализаторов в отдельности. Например, в слабокислой среде Си304 не ускоряет распада Н2О2, а ЫаМо04 ускоряет очень незначительно, совместное же применение этих катализаторов увеличивает скорость реакции, которая растет пропорционально повышению концентрации каждого из катализаторов. В реакционной смеси образуется несколько промежуточных продуктов молибдат образует [c.285]

    Сорбит (D-глюцит) впервые обнаружен в 1872 г. в свежем соке ягод рябины. Широко распространен в природе — найден во фруктах (яблоки, слива, груша, вишня, финики, персики, абрикосы и др.), в красных морских водорослях. Раньше сорбит получали в промышленности электролитическим восстановлением глюкозы в настоящее время способ заменен каталитическим гидрированием глюкозы под давлением. Химическое восстановление глюкозы в сорбит осуществлено амальгамой натрия, а та.кже с помощью циклогексанола или тетрагидрофурилового спирта в присутствии никеля Ренея. Сорбит наряду с маннитом образуется при гидрировании фруктозы, инвертированного сахара и при гидролитическом гидрировании сахарозы. Сорбит может быть получен гидролитическим гидрированием крахмала и целлюлозы [12], кроме того, при восстановлении ла/ктонов О-глюкоиовой кислоты, а та,кже по реакции Канниццаро (2 молекулы глюкозы в присутствии щелочи и катализатора гидрирования диспропорциониру-ются в сорбит и глюконовую кислоту [13]). [c.12]

    Образование диссипативных структур в последние годы многократно наблюдалось и в химии (осциллирующие реакции), особенно в катализе при исследовании катализаторов методами in situ, т.е. позволяющими наблюдать за катализаторами непосредственно в ходе реакции. Типичными примерами этих структур, свойственными только неравновесным процессам, являются временные и пространственно-временные диссипативные структуры, такие как изотермические осцилляции скорости каталитической реакции и образование химических волн. Оба типа структур наблюдаются как для гетерогенных, так и для гомогенных каталитических систем. Чисто пространственные диссипативные структуры в катализе известны пока меньше в связи с трудностями их экспериментального обнаружения на фоне равновесной реконструкции поверхности катализатора под действием реакционной среды. [c.379]

    С 1812 г., со времени открытия К. С. Кирхгофом реакции гидролиза крах.мала под влияние.м ггезпачнтельного количества серной кислоты, наблюдал Берцелиус за ходом первых каталитических открытий. Разложение аммиака на металлах, осуществленное в 1813 г. Л. Тенаром окисление метана кислородом воздуха на платине, открытое в 1817 г. Г. Дэви самовозгорание водорода и органических веществ на платине, обнаруженное в 1820—1822 гг. и Деберейнером,— все это Берцелиус объединил в 1835 г. в одно целое, назвал катализом и увидел в нем связующее звено между неорганической и живой природой. [c.172]

    В данной главе обсуждаются экспериментальные результаты по каталитическим свойствам цеолитов в реакциях гидрирования углеводородов и восстановления кислородсодержащих органических, соединений альдегидов, кетонов, фурановых соединений, окисей олефинов. Поскольку после обнаружения гидрирующей активности цеолитов многие вопросы, связанные с выяснением механизма их действия, изучались параллельно на различных реакциях, то дпя удобства рассмотрения материал зтой главы сгруппирован следующим образом. В разделе 1.1 на примере реакций гидрирования аромагаческих и олефиновых углеводородов рассмотрено влияние иа активность цеолита его химического состава и структуры, концентрации и природы катионов, условий предварительной термообработки и др. В разделе 1.2 катал1ГП1ческие свойства цеолитов обсуждаются в связи с реакциями селективного гидрирования диеновых и ацетиленовых углеводородов. Восстановлению кислородсодержащих соединений посвящен раздел 1.3. [c.9]

    В подразд. 4.2.6.1 части I отмечалось, что в условиях неравновесной акцепторно-каталитической сополиэтерификации формирование микроструктуры макромолекул зависит от двух основных факторов разницы в активности взаимодействующих групп и ее изменении в ходе поликонденсации, с одной стороны, и различия в способах и последовательности введения сомономеров в зону реакции, с другой стороны. Обнаруженный структурный матричный эффект показывает, что использование полимеров-матриц является еще одним фактором регулирования микроструктуры макромолекул [20]. [c.310]

    Восстановление бензола и других аренов протекает также в присутствии широкого набора гомогенных катализаторов [100]. Так, бензол восстанавливается водородом в циклогексан при проведении реакции в Ы,Ы-диметилформамиде при 20°С и 10 Па в присутствии примерно 10- моль родиевого катализатора, представленного формулой (99). При использовании каталитической системы типа системы Циглера [никель(П)-2-этилгексаноат — триэтилалюминий] при температурах 150—210°С в присутствии водорода под давлением 7-10 Па о-ксилол восстанавливается в смесь цис- и гране- ,2-диметилциклогексана (соотношение 6,5 3,5). Отмечена высокая стереоселективность [101] при восстановлении о- и лг-ксилолов в ис-диметилциклогексаны при использовании в Качестве катализатора комплекса (100). Отметим, что в случае гомогенного катализа не был обнаружен водородный обмен, кото- [c.391]

    Каталитическое действие рения на окислительно-восстановительные реакции между хлоратом и Зп(П) и арсенатоми Зп(П) рекомендовано использовать для качественного обнаружения рения [1215, 1217]. Открываемый минимум 5-10 мкг Ве. Обнаружению рения мешают молибден и вольфрам при их соотношении к рению [c.72]


Смотреть страницы где упоминается термин Реакции обнаружения каталитические: [c.228]    [c.83]    [c.207]    [c.121]    [c.153]    [c.64]    [c.207]    [c.234]    [c.182]    [c.289]    [c.302]    [c.186]    [c.309]    [c.130]    [c.489]    [c.144]   
аналитическая химия ртути (1974) -- [ c.120 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитические реакции Реакции

Каталитические реакции Реакции каталитические

Реакции каталитические

Реакции обнаружения



© 2025 chem21.info Реклама на сайте