Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы определения серебра с органическими реагентам

    Известны методы определения серебра в почвах, растениях, природных и сточных водах, в рудах, минералах, силикатах и горных породах, в чистых металлах и неметаллах, в сплавах, полупроводниковых материалах, в гальванических ваннах, в реактивах и фармацевтических препаратах, в фотографических материалах, в смазочных маслах и других объектах. За небольшими исключениями, особенность этих материалов состоит в том, что содержание серебра в них обычно невелико, поэтому главное значение имеют методы определения микроколичеств серебра. Из физических методов наибольшее распространение имеет спектральный анализ. В последние годы публикуется много работ в области радиоактивационного определения серебра и атомноабсорбционных методов. В химических методах чаш,е всего применяется экстракционно-фотометрическое определение серебра в виде дитизоната, реже используется и-диметиламинобензилиденроданин и некоторые другие органические реагенты. [c.172]


    Рекомендованные В. Г. Горюшиной и другими (в Гиредмете) фотометрические методики определения микропримесей основаны главным образом на использовании известных ранее высокочувствительных и избирательных цветных реакций, образуемых примесными элементами с различными органическими и — реже — неорганическими реагентами. В качестве примера можно назвать дитизон, использованный для определения серебра, золота, ртути и других элементов, диэтилдитиокарбами-нат свинца — для меди, а-фурилдиоксим — для никеля, батофенантро-лин — для железа. Большое значение имели реакции образования восстановленных гетерополикислот, используемые при определении фосфора, мышьяка и кремния, или реакция образования роданида железа, удобная для определения данной примеси в некоторых материалах высокой чистоты (галлий, индий, их соединения и др.). Чувствительность всех этих методов в фотометрическом или спектрофотометрическом вариантах лежит, как правило, на уровне 10 %. [c.12]

    Известны косвенные титриметрические методы определения, основанные на обменных реакциях ионов серебра с цианидным комплексом никеля, сульфидом меди, на восстановлении ионов серебра металлической медью или амальгамами висмута, цинка, кадмия и последующем комплексонометрическом титровании обменивающихся ионов, выделившихся в количестве, эквивалентном содержанию серебра. К непрямым титриметрическим методам относится также осаждение серебра в виде труднорастворимых соединений с органическими или неорганическими реагентами с последующим титрованием избытка осадителя подходящим реа-1 ентом или растворение соединения серебра в цианиде калия, избыток которого оттитровывают стандартным раствором нитрата серебра в присутствии иодида калия. [c.77]

    Для фотометрического определения малых количеств серебра наибольшее распространение получили методы с применением органических реагентов. Многие из них образуют с серебром малорастворимые в воде внутрикомплексные соединения, извле-каюш иеся органическими растворителями, что позволило разработать чувствительные экстракционно-фотометрические методы. [c.100]

    Таким образом, осаждение серебра в форме металла после восстановления органическими реагентами можно использовать при анализе в отсутствие и в присутствии посторонних ионов в последнем случае необходимо вводить маскирующие реагенты. Однако методы восстановления органическими реагентами не имеют каких-либо существенных преимуществ по сравнению с гравиметрическим определением серебра в виде хлорида. [c.72]


    Экстракционно-фотометрический метод определения серебра с дитизоном выполняется по методу одноцветной или смешанной окрасок. Устойчивость AgHDz к действию щелочей используется для удаления избытка реагента из органической фазы взбалтыванием с разбавленным раствором аммиака окрашенный органический раствор дитизоната фотометрируют по методу одноцветной окраски [869]. По методу смешанной окраски фотометрирование проводят при определенной длине волны, в максимуме поглощения дитизоната или свободного реактива [869]. Если в растворе присутствуют ионы меди, то вместо дитизона в качестве экстракционного реагента можно использовать дитизонат меди, так как последний прочнее, чем дитизонат серебра. Смешанная окраска в этом случае изменяется более резко, от фиолетовой до желтой. Этот способ не требует удаления ионов меди из анализируемого раствора. [c.108]

    Получили распространение методы определения серебра взвешиванием в виде металла. Серебро выделяют внутренним или обычным электролизом или восстанавливают неорганическими и органическими реагентами. [c.64]

    Другая группа фотометрических методов определения серебра основана на реакциях двухвалентного серебра с различными органическими реагентами. Ионы одновалентного серебра способны окисляться до двухвалентного состояния под действием подходящего окислителя, чаще всего ионов персульфата. При [c.48]

    Многие органические реагенты, применяемые в фотометрических методах определения серебра, содержат в молекуле серу, х ак, нанример, дитизон и роданин. [c.365]

    Число реагентов, пригодных для определения микроколичеств серебра, сравнительно невелико [1—5]. Практически почти все фотометрические методы определения одновалентного серебра связаны с использованием органических реагентов. Одним из самых широко распространенных фотометрических реагентов является дитизон (дифенилтиокарбазон), предложенный Фишером [6,7]. Дитизон образует с серебром два соединения (состава 1 1 в кислой среде и состава 2 1 в нейтральной и щелочной), хорошо экстрагируемые малополярными растворителями. Для анализов в основном используют первое соединение, имеющее коэффициент молярного погашения примерно 27 ООО при 462 нм [8]. Дитизон обладает широким спектром действия, взаимодействует со многими металлами. Селективность определения достигается изменением концентрации водородных ионов в растворе. [c.47]

    Раствор дитизоната в органическом растворителе взбалтывают с водным раствором реагента, образующего устойчивый комплекс с металлом. Этот метод применим для разложения дитизонатов серебра и ртути. Перед тем как производить дальнейшее определение металла дитизоном, комплекс в водном слое следует разрушить или, по крайней мере, сделать его значительно менее устойчивым по сравнению с дитизоновым комплексом, изменяя условия среды, например, изменяя кислотность (стр. 408). [c.109]

    СТЫМ водородом или выделяют РЬ(ЫОз)г концентрированной азотной кислотой [817]. Специфичны и не сопровождаются потерями примесей химические реакции восстановления металлов в кислых >астворах. В качестве восстановителя при анализе чистых ртути 1273] и серебра [1274] предложена муравьиная кислота. Серебро при восстановлении его солей образует коллоид, и для полного удаления его из раствора вводят ртуть с целью образования амальгамы. Реакции осаждения труднорастворимых солей сильных неорганических кислот, характерными примерами которых служат выделение Са, Ва [325], Sr [633] и РЪ [331] в виде сульфатов, РЬ в виде РЬС1г [204, 1206] и Bi в виде Bib [333] достаточно избирательны и протекают при значительной концентрации кислоты. Высокоселективное осаждение элементов основы органическими реагентами требует значительных затрат дефицитных реактивов, чистота которых часто не отвечает необходимым требованиям. Методы разделения, включающие осаждение циркония миндальной кислотой [518, стр. 483], молибдена а-бензоиноксимом [329] и никеля диметилглиоксимом [326], из-за небольшой исходной навески являются скорее способами отделения неблагоприятной для спектрального определения основы, чем методами концентрирования. [c.309]

    Качественный анализ. Качественное обнаружение ионов неорганических соединений методом осадочной хроматографии чаще всего выполняют в колонках или на бумаге. В первом случае в качестве носителей используют оксид алюминия, силикагель (являющийся иногда одновременно осадителем), кварцевый песок, стеклянный порошок, насыщенные ионами-осадителями аниониты. Иногда колонки заполняют также чистым органическим реагентом-осади-телем, например о-оксихинолином, Р-нафтохинолином, купфероном, диметилглиоксимом, а-нитрозо-Р-нафтолом и др. Неорганическими осадителями для определения катионов служат гидроксид натрия, иодид калия, сульфид натрия и аммония, гексациано-(П)феррат калия, бромид и фосфат натрия, хромат калия для определения некоторых анионов используют нитрат серебра, нитрат ртути (I). [c.232]


    Амперометрические методы определения основаны главным образом на реакциях образования ионами серебра труднорастворимых осадков с органическими и неорганическими реагентами. В качестве титрантов используются преимущественно органические серусодержащие соединения или иодид-ионы. Титрование проводят с платиновым вращающимся электродом, так как металлическая ртуть взаимодействует с ионами серебра, восстанавливая их до металла. Известны два варианта титрования катодный, основанный на восстановлении ионов серебра или органического реагента, и анодный,— при котором фиксируется ток окисления иодид-ионов или серусодержащих реактивов на аноде [357]. [c.86]

    В XIX в. был разработан метод колориметрического определения железа(П1) с помощью тиоцианата (Герапат, 1852 г.) и описано титриметрическое определение серебра с использованием этого же реагента (Фольгард, 1877 г.). Для титрования борной кислоты рекомендовался глицерин (Томсон, 1893 г.) в различных реакциях применялись следующие органические реагенты морин — во флуоресцентной пробе на алюминий (Гоппельсрёдер, 1867 г.), флуоресцеин — в качестве кислотно-основного индикатора (Крюгер, 1876 г.), анилин — для каталитического обнаружения ванадия (Гвийяр, 1876 г.), 1-нитрозо-2-нафтол — как осадитель кобальта (Ильинский, фон Кнорре, 1885 г.), 2,2 -дипиридил и 1,10-фенан-тролин-—в качестве реагента на железо(П) (Блау, 1888 г.). [c.20]

    Цинк легко реагирует с дитизоном при pH 5—8, образуя ярко красный дитизонат цинка. Для устранения влияния других ме таллов, образующих дитизонаты при этих условиях, применяют комплексообразователи. При pH 4—5,5 тиосульфат натрия мешает образованию дитизонатов меди, ртути, серебра, золота, впс лута свинца и кадмия, не мешая протеканию реакции дитизона с цинком. В присутствии большого количества никеля и кобальта в качестве дополнительного маскирующего реагента используют цианид калия. Колориметрическое определение дитизоната цинка производится методом смешанной окраски, при котором избыток дитизона остается в органическом растворителе вместе с дитизо-натом. [c.340]

    Внутрикомплексные соединения (дитизонаты [6, 8, 14, 19, 20, 22, 29, 30], оксихинолинаты [6, 8, 14, 18, 20, 22, 26], купферонаты [6, 14, 19, 20, 30, 31 ], диэтилдитиокарбаминаты [6, 8, 14, 19, 20, 30, 32, 33] и др.). Эти соединения применяШся для полного отделения и разделения небольших количеств элементов. Для растворения внутрикомплексных соединений и извлечения их из водной фазы чаще всего используются хлороформ или четыреххлористый углерод. Дитизон, 8-оксихинолин, купферон и диэтилдитио-карбаминат натрия являются групповыми реагентами, которые позволяют определять как группу интересующих аналитика примесей, так и отдельные примеси (меняя pH исходного раствора, добавляя другие комплексообразующие вещества и т. д.). Внутрикомплексные соединения многих металлов интенсивно окрашены и имеют значения молярных коэффициентов погашения в органических растворителях до 1 10 . Это обстоятельство позволило разработать большое количество экстракционно-фотометрических методов определения малых количеств (до 1-10 %) ионов меди, серебра, цинка, железа, алюминия, никеля, кобальта и других в самых разнообразных образцах [6, 14, 15, 17—24, 29—33], а также стр. 107, 109. [c.32]

    Для определения неорганических анионов, разделенных бу- мажной хроматографией, органические реагенты применяли мало. Можно назвать определение нитрат-иона в концентрированной серной кислоте при помощи дифениламина, фторида при помощи цирконийализаринового лака, флуоресцентный метод определения хлорид- и бромид-ионов с использованием флуоресцеина и нитрата серебра, применение дифенилкарбазида для определения хроматов и бихроматов, куркумы— для определения боратов и бруцина —для определения броматов, нитратов и хлоратов. Была описана схема анализа обычных анионов с применением бумажной хроматографии [37]. [c.164]

    Существует ряд косвенных методов определения, при которых цианиды дают окрашивание вследствие замещения ими металлов в комплексах с соответствующими органическими реагентами. На этом основываются методы с использованием комплекса ртути с дифенилкарбазоном [6, 26, 27] или с тг-диметиламинобензилиденроданином [9], комплекса серебра с дитизоном [28, 29] или с тиофлуоресцеином [30], комплекса палладия с а-фурилдиокси-мом [5, 31]. [c.412]

    Тетраметилдиаминотрифенилметан дает более чувствительную реакцию, чем дифенилпроизводное. Эта реакция была применена для определения марганца в биологических материалах (см. разд. Ход анализа на стр. 555) после окисления его перйодатом. При 75—85° реагент окисляется, образуя окрашенные в желтый цвет продукты окисления. В указанном интервале температур перйодат заметно не реагирует с соединением. Этот метод уступает перманганатному методу определения во всех отношениях, кроме чувствительности, которая очень велика (0,0001 уМп1см для lg /о// = 0,001 при 475 мц). Поэтому метод имеет значение в тех случаях, когда количество анализируемого образца ограниченно. Извлечение 0,05— 0,2 у марганца, добавленного к биологическим материалам, составляет 96—112%. Чувствительность можно еще больше увеличить, проводя экстракцию окрашенных продуктов окисления не смешивающимися с водой органическими растворителями. Хром, ванадий и церий высших степеней окисления также дают окрашенные в желтый цвет соединения. Медь, железо, свинец и серебро- не мешают. Хлориды должны отсутствовать. [c.551]

    Предварительно полученные осадки органических реагентов. К раствору пробы 0,2-0,5 М концентрации по кислоте добавляют небольшое количество предварительно полученного объемного осадка п-диметилами-нобензилиденродамина и селективно извлекают микроколичества серебра, осаждение коюрых обычными методами невозможно [609]. При анализе висмута высокой чистоты этим методом отделяют л-10 г/г серебра для его последующего спектрофотометрического определения. Степень извлечения превышает 95%, коэффициент концентрирования составляет 10 -10 . [c.98]

    Порошкообразные органические реагенты. Микроколичества серебра, железа и кобальта сорбируют из растворов разбавленной азотной кислоты на порошке дитизона или 1-нитрозо-2-нафтола. Облучение ультразвуком ускоряет сорбцию [610, 611]. Метод использован при определении примесей серебра в свинце особой чистоты. Порошок нафталина с присадком ]-(2-тиазолилазо)-2-нафтола применяют для концентрирования никеля и других тяжелых металлов из растворов с pH = 6,9 [612]. Порошок с сорбированными микроэлементами высушивают, гранулируют и анализируют рептгенофлуоресцентным методом. [c.98]

    Если анализируемый раствор содержит медь, тогда в качестве реагента можно пользоваться дитизонатом меди [345а]. Раствор дитизона (0,001%-ный) в СС14 встряхивают с небольшим избытком разбавленного раствора сернокислой меди в 0,05 N НгЗО в течение 1—2 мин. Органический слой промывают 0,01 N Н ЗО для удаления взвешенных капель водного раствора сульфата меди. 5—20 мл анализируемого раствора, подкисленного серной кислотой до 0,5 ЛГ концентрации, переносят в плоскодонную колбу со стеклянной пробкой. Прибавляют 2 мл раствора дитизоната меди на каждые 0,5—5 мкг серебра и встряхивают 2 мин. Сравнивают окраску органической фазы с аналогично приготовленными стандартами. При фотометрическом определении подходящий объем подкисленного раствора серебра, содержащего 2—10 мкг металла, встряхивают в делительной воронке в течение 2 мин. с 5 мл раствора дитизоната меди в СС14. Измеряют оптическую плотность органического слоя с желтым светофильтром. Содержание серебра находят по калибровочному графику, построенному в аналогичных условиях. Сравнение окрасок в двухцветном методе можно проводить также колориметрическим титрованием. [c.110]

    Для отделения микрограммовых количеств серебра от тория при определении в окиси или нитрате тория [446] к азотнокислому раствору пробы с pH 1—2 прибавляют этанольный раствор п-диметиламинобензилиденроданина, выдерживают 3 часа, осадок отфильтровывают. Серебро полностью соосаждается с реагентом, в то время как весь торий остается в растворе. Осадок растворяют в HNO3, раствор выпаривают с H IO4 и HjSO для разрушения органического вещества почти досуха. Остаток растворяют в разбавленной серной кислоте и определяют каким-либо методом. При помощи на синтетических пробах показано, что этим [c.146]

    Для анализов повышенной точности и некоторых метрологических работ (определения атомной массы элементов, анализа изотопного состава и др.) воду перегоняют два — четыре раза. Между перегонками ее очищают от определенных примесей другими методами. Например, углекислоту связывают щелочными реагентами или удаляют продуванием через воду декарбонизи-рованного воздуха при пониженном давлении, органические примеси разрушают длительной обработкой перманганатом. Стеклянные холодильники и сосуды для хранения очищенной воды тщательно пропаривают, иначе вода очень скоро поглотит щелочи из поверхностного слоя стекла. Пользуются также аппаратурой из олова, серебра, кварцевого и боросиликатного стекла. Полностью исключают контакт воды с резиновыми сочленениями. [c.79]


Смотреть страницы где упоминается термин Методы определения серебра с органическими реагентам: [c.105]    [c.67]    [c.309]    [c.92]    [c.25]    [c.427]   
Аналитическая химия серебра (1975) -- [ c.72 ]




ПОИСК





Смотрите так же термины и статьи:

МЕТОДЫ И РЕАГЕНТЫ

Органические реагенты

Органические реагенты, определение



© 2025 chem21.info Реклама на сайте