Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебро определение гравиметрическое

    Для гравиметрического определения малых количеств серебра предложен метод [962], основанный на добавлении к анализируемому раствору стандартного раствора соли серебра в количестве, достаточном для точного взвешивания осадка хлорида серебра. [c.65]

    Галогены и сера. Количественное определение галогенов осуществляют гравиметрически в виде галогенидов серебра. Для этого вещества нагревают в металлической закрытой трубке (бомбе) с концентрированной азотной кислотой при температуре от 250 до 300 °С (метод Ка-риуса). Содержанхаяся в соединении сера при этом окисляется до сульфата, который также может быть легко определен гравиметрически в виде сульфата бария. [c.33]


    Определение в виде хлорида. Одним из наиболее точных и распространенных гравиметрических методов определения серебра является осаждение его в виде хлорида в разбавленном азотно- [c.64]

    В общем случае электролиз растворов солей металлов в присутствии комплексообразующих веществ приводит к образованию лучших по свойствам осадков, нежели в случае растворов, содержащих только сольватированные ионы металлов. Лучшие осадки получаются при электролизе растворов, содержащих цианид-ионы или аммиак. Так, например, из цианидных растворов серебро выделяется в виде гладкого блестящего осадка, тогда как в присутствии нитрат-ионов образуется рыхлый осадок серебра. Следует заметить, что свойства осадков практически невозможно предсказать. В одних случаях образуются осадки с хорошими свойствами, а в других - в осадок могут внедриться посторонние вещества, что приводит к завышению результатов анализа. Более подробно об условиях гравиметрического определения металлов можно прочитать в специальной литературе. [c.545]

    Внешнесферные комплексные соединения образуются при присоединении к внутрисферному координационно-насыщенному комплексу электронейтральных или заряженных лигандов. Существуют нейтральные внешнесферные комплексы, относительно мало растворимые в воде (растворимость 10 — 10 моль/л), которые используют в качестве форм осаждения в гравиметрическом анализе. В воде внешнесферные комплексы тем менее растворимы, чем крупнее составляющие их фрагменты. При этом определяемый элемент может входить в состав внешнесферного комплекса или в виде внут-рисферного комплекса или, реже, в виде внешнесферной частицы. Например, внешнесферная координация органических оснований анионными комплексами элементов позволяет проводить гравиметрическое определение ряда металлов серебра, золота, кадмия, ртути, цинка и др. В табл. 11.1 приведены примеры использования внешнесферных комплексных соединений в гравиметрии. [c.155]

    Гравиметрическое определение основано на осаждении ионов серебра неорганическими или органическими реагентами и последующем взвешивании полученных осадков. [c.64]

    Из-за взрывоопасности большинства осажденных азидов (например, серебра, ртути) гравиметрические методики для определения азотистоводородной кислоты применяются крайне редко. При этом должны быть обеспечены меры предосторожности. Например, в методе [646] предпочитают для надежности высушивать не азид серебра, а промытый, влажный осадок азида обработать азотной кислотой, осадить соляной кислотой хлорид и этот осадок взвешивать. [c.47]


    Электрохимические кулонометры представляют собой электролизеры, в которых определяют массу продукта, образующегося в растворе или выделяющегося на электроде (электродах) со 100%-ной эффективностью. По массе образовавшегося продукта рассчитывают Q. В зависимости от природы реакции и способа определения массы выделившегося продукта электрохимические кулонометры подразделяются на гравиметрические, титрационные, газовые, спектрофотометрические и др. Среди них высокой точностью отличается серебряный кулонометр. Однако он неудобен в работе из-за рыхлости образующегося на катоде осадка частиц серебра, которые осыпаются при промывании электрода. [c.70]

    Пример 6.9. Для гравиметрического определения хлорида в каменной соли пробу 100 мг растворили в 100 см раствора. Рассчитать, какое количество 0,1 М раствора нитрата серебра следует добавить к раствору, чтобы потери вследствие неполноты осаждения хлорида серебра не превысили 0,001%. Солевым эффектом пренебречь. [c.51]

    Металлическое серебро [182, 964, 1004, 1055, 1056, 1251] обычно применяют в виде губчатого серебра, гранул или проволоки для элементного анализа ртутьсодержащих органических веществ. Предложен универсальный метод гравиметрического определения ртути в неорганических материалах различных типов и любого состава. [c.76]

    Определяемую составную часть переводят в химическое соединение. Последнее изолируют и переводят в форму со строго определенным составом, т. е. в так называемую гравиметрическую форму (см. гл. 9, 1). По массе осадка гравиметрической формы рассчитывают содержание определяемой составной части. Например, нужно определить содержание серебра в сплаве. Для этого его растворяют в азотной кислоте. Ионы серебра осаждают хлороводородной кислотой  [c.219]

    Таким образом, осаждение серебра в форме металла после восстановления органическими реагентами можно использовать при анализе в отсутствие и в присутствии посторонних ионов в последнем случае необходимо вводить маскирующие реагенты. Однако методы восстановления органическими реагентами не имеют каких-либо существенных преимуществ по сравнению с гравиметрическим определением серебра в виде хлорида. [c.72]

    В некоторых случаях серебро можно определить взвешиванием бромида, иодида, цианида, роданида, циа-ната или вольфрамата серебра [1200], однако эти методы практически не используются в весовом анализе. Указанные выше методы гравиметрического определения серебра с неорганическими ионами имеют второстепенное значение по сравнению с осаждением его в виде хлорида. [c.67]

    Гравиметрическое определение хлорид-ионов проводили в избытке ионов серебра. Рассчитайте относительную погрешность определения, если известно, что [c.226]

    Электрогравиметрический метод анализа заключается в выделении определяемого элемента в виде металла на предварительно взвешенном катоде, после чего электрод с осадком взвешивают и определяют количество металла. Этим способом можно определять кадмий, медь, никель, серебро, олово и цинк. Некоторые вещества могут окисляться на платиновом аноде с образованием нерастворимого плотного осадка, пригодного для гравиметрического определения. Примером может служить окисление свинца(П) до диоксида свинца. Кроме того, в аналитической химии электролиз можно использовать для разделений ионов известен способ, когда легко восстанавливающиеся ионы металлов осаждаются на ртутном катоде, а трудно восстанавливающиеся катионы остаются в растворе. Таким способом алюминий, ванадий, титан, вольфрам, щелочные и щелочноземельные металлы можно отделить от железа, серебра, меди, кадмия, кобальта и никеля, которые выделяются на ртути. [c.413]

    Для гравиметрического определения применяют таннин в слабокислом растворе. Раствор нагревают, добавляют 5—10 г хлорида аммония, 5—10 г ацетата аммония и 10-кратное количество таннина. Отфильтровав раствор, промывают осадок 2%-ным раствором нитрата аммония, содержащим немного таннина, прокаливают и взвешивают в виде пятиокиси ванадия. Для гравиметрического определения применяется также нитрат серебра [42]. [c.160]

    Точка плавления нормального молибдата серебра составляег 483° С [174]. В случае его прокаливания в течение 2 час. при 1000° С заметной убыли в весе и изменения состава не наблюдается [174]. При гравиметрических определениях Ag2Mo04 температура прокаливания должна быть 250—500° С [903]. [c.19]

    Определение r(VI). Для гравиметрического определения Gr(VI) используют хроматы бария (ПР = 1,6-10 при 18° С), свинца (ПР = 1,8-10 при 20° С), серебра (ПР = 2-10" при 25° С), ртути(1) (ПР=2-10" при 25° С). Определению хрома в виде хромата ртути(1) мешают многие ионы [132]. Осаждение Ag2 r04 возможно в присутствии двукратных количеств магния и равных количеств Мп(П), Fe(IH), Си(П), Ti(IV), Zr, Ni, Со и больших количеств SO4 . Ионы AsO , W0 , VO3, С1 мешают определению [1100]. [c.31]

    Гравиметрические методы определения. Красный осадок соединения кобальта (III) с 1-нитрозо-2-нафтолом примерного состава Со(СюНб02 )з-пН20 образуется в слабокислых (pH 3.8—4,0), нейтральных и аммиачных растворах. Образовавшееся соединение при подкислении не разрушается. Мешают осаждению кобальта серебро, висмут и олово. Железо и вольфрам можно маскировать фторид-ионом. Не мешают осаждению кобальта равные по содержанию количества никеля, алюминия, кадмия, кальция, магния, бериллия, хрома, свинца, марганца, цпнка, сурьмы, мышьяка, ртути. В присутствии больших количеств никеля проводят переосаждение кобальта. После высушивания при 115°С состав соединения становится постоянным (п = 2), и оно применимо для гравиметрического определения содержания кобальта. В некоторых случаях отделение Со от сопутствующих элементов проводят осаждением в виде кобальтинитрита (гексанитрокобальтата III) каль я  [c.71]


    Ненадкевич и Салтыкова [236] разработали гравиметрический метод определения кобальта, основанный на осаждении цианидного комплекса трехвалентного кобальта нитратом серебра [c.96]

    Осадки аналогичного состава дают также катионы ртути, меди,. кадмия, никеля, цинка, марганца, хрома, свинца, серебра и железа, поэтому все эти ионы необходимо удалить. Образование осадка [ o( 5H5N)4] r207 было использовано (1182] для разработки гравиметрического метода определения кобальта (также никеля и кадмия). Осадок отфильтровывают через стеклянный фильтр и промывают раствором, содержащим немного бихромата калия и пиридина, а затем этанолом и абсолютным эфиром, после чего высушивают 15 мин. в вакуум-эксикаторе и взвешивают. Фактор пересчета на кобальт — 0,09968. [c.97]

    Во-вторых, реакция осаждения должна проходить количественно в соответствии с уже хорошо известной. стехиометрией. Это требование налагает самые большие ограничения на широкое применение реакций осаждения в химическом анализе. Этому требованию удовлетворяют всего лишь несколько осадков, например осадок хлорида серебра, осажденный в строго определенных условиях. В этом случае реакция превосходно, подчиняется стехиометрии. Многие катионы. металлов, включая ЩИ НК, никель, кобальт, марганец, алюминий, железо, хром, свинец, медь, В.ИСМУТ и кадмий, образуют нерастворимые гидроксиды. Можно было бы ожидать, что эти элементы можно определять посредством осадительного титрования стандартным раствором гидроксида натрия. Но, к сожалению, осаждение гидроксидов этих металлов происходит не строго в соответствии со стехиометрией. Гидроксиды металлов адсорбируют гидроксид-ионы и посторонние катионы, а количество адсорбируемых веществ колеблется в очень широких пределах, зав и сит от температуры, а также от концентрации и состава раствора. В гравиметрическом анализе загрязненный осадок мо жно растворить и переосадить при условиях, способствующих образованию чистого соединения, в титриметрии этого сделать невозможно. [c.251]

    Показана возможность гравиметрического определения серебра в виде теллурида [1547] осаждением Na2Te. [c.66]

    Определение в форме малорастворшлых соединений с комплексными анионами. Известны гравиметрические методы, основанные на образовании ионом серебра труднорастворимых соединений с комплексными анионами типа [ г(NHз)2(S N)4] и [Fe( N)5NO]2 [23, 15151. [c.67]

    При определении милли- и микрограммовых количеств серебра гравиметрическим методом можно также применять 2,3-нафто-триазол, образующий при pH 10 с ионами серебра осадок стехио-метрического состава с соотношением 1 1 [1629]. Определению 5—100 мкг серебра в присутствии ЭДТА и тартратов мешают только сурьма и иодид-ионы. [c.73]

    Описана методика гравиметрического определения серебра в растворах чистых солей осаждением 2-амино-1,3,4-тио-диазол-5-тиолом [799] и 2-меркаптобензокс-а 3 о л о м [576]. [c.75]

    Осадок, взвешиваемый при гравиметрическом определении хлорид-ионов, состоит из неразложившегося хлорида серебра Ag l, серебра, выделенного в реакции (2), и вторично образовавшегося Ag l. Масса этого осадка равна  [c.264]

    Для определения больших количеств электричества (десятки и сотни кулонов) можно использовать кулонометры, действие которых основано на осаждении некоторых металлов (меди, серебра и др.) на платиновом аноде с последующим гравиметрическим определением количества выделенного осадка. На принципе электроосаждения основаны медные [126, 127], серебряные [128— 131] и окисноталлиевый [129] кулонометры, в которых иногда количество образовавшегося осадка определяют титриметри-чески [132] или кулонометрически [127]. Перечисленные выше типы кулонометров обеспечивают различную точность получаемых результатов, зависящую от ряда факторов, одним из которых являются абсолютные определяемые количества электричества. В каждом конкретном случае аналитик имеет возможность самостоятельно выбрать прибор, наиболее подходящий для решения стоящей перед ним задачи. Проведенное Пакманом [133] изучение оптимальных условий работы кулонометров различных типов (газового, йодного и серебряного) показало, что при определении миллиграммовых к оЛичеств веществ лучше всего использовать йодный кулонометр. [c.17]

    Повторив промывание 4—5 раз, делают пробу на полноту удаления прилгесей. Для этого собирают из воронки в пробирку небольшую порцию фильтрата и прибавляют к нему реактив, дающий характерную реакцию с удаляемым из осадка ионом. Нанример, выполняя пробу на полноту удаления С1 из осадка Ва804, берут 1—2 мл фильтрата, подкисляют его азотной кислотой и действуют нитратом серебра. Если муть хлорида серебра при этом не появляется, то промывание прекращают. Фильтрат при гравиметрических определениях обычно не анализируют и обрасывают, если он совершенно прозрачен, т.е. не содержит частиц осадка. [c.203]

    Таким образом, качественно можно обнаружить серебро в виде хлорида при концентрациях 10 моль1л и выше, количественное гравиметрическое определение осуществимо в 10 моль л и более концентрированных растворах солей серебра. [c.40]

    Выбор аналитического метода в основном зависит от величины измеряемой растворимости. Умеренно высокие значения обычно определяют гравиметрическим или объемным методом, а низкие значения — полярографическим [15], колориметрическим [15, 48] или радиометрическим [59] методами. Незаряженные формы могут быть иногда отделены от насыщенного раствора экстракцией. Так, растворимость углеводородных лигандов в водных растворах серебра(I) была определена спектрофотометрически после экстракции лиганда гексаном [2], в то время как растворимость дитизона в буферных растворах измерялась [25] добавлением избытка радиоактивного серебра, экстрагированием дитизоната серебра хлороформом и определением активности в органической фазе. [c.232]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    Гравиметрический метод определения 0,1 г таллия в 100 мл раствора с помощью хромата калия является одним из наиболее точных [18]. К 100 мл раствора добавляют 3 мл аммиака (2 1), нагревают до 70—80° С, вводят избыток 10%-ного раствора хромата калия, охлаждают и отстаивают несколько часов. Полученный после фильтрования через тигель Гуча осадок промывают 1%-ным раство-"ром осадителя, затем 50%-ным этиловым спиртом, сушат при 120— 130° С и взвешивают в виде хромата таллия. Помехи от серебра, ртути и меди устраняют добавлением цианида калия. 50%-ный раствор сульфосалициловой кислоты подавляет влияние галлия, индия, алюминия, железа и меди. Винная кислота с достаточным количеством аммиака предотвращает влияние цинка, кадмия, никеля, кобальта и молибдена. [c.154]

    Водный раствор отделяют от нерастворимого остатка посредством фильтрования через взвешенный фильтр на нутче и затем, в случае надобности, выпаривают досуха для определения общего количества и анализа растворимых солей. Во многих случаях можно также, после доведения до литра, брать равные части раствора и определять в них отдельные соли объемными или гравиметрическими методами. Аммиачная селитра определяется, например, отгонкой NHg или по формальдегид-ному способу, хлористые соли — титрованием по Volhard y или осаждением в виде хлористого серебра, щавелевокислые —осаждением в виде щавелевокислого кальция, растворением последнего в разбавленной серной кислоте и титрованием перманганатом, азотнокислый кальций — осаждением кальция, хлораты — путем восстановления и определения хлора, как указано выше. Азотнокислые соли щелочных и щелочноземельных металлов определяют в сухом остатке по S hulze-Tieman п у (т. И, [c.648]


Смотреть страницы где упоминается термин Серебро определение гравиметрическое: [c.144]    [c.382]    [c.88]    [c.69]    [c.267]    [c.20]    [c.76]    [c.77]    [c.36]    [c.129]    [c.144]    [c.236]    [c.162]    [c.277]    [c.166]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.242 ]




ПОИСК





Смотрите так же термины и статьи:

Определение гравиметрически



© 2025 chem21.info Реклама на сайте