Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение серебра галлии

    Предел обнаружения методом фотометрии пламени составляет 0,002—5 мкг/см Для щелочных металлов этот метод наиболее чувствителен из всех существующих методов их определения, за исключением радиохимических. Это справедливо также для кальция и стронция, если отсутствует анионный эффект. Определению меди, серебра, галлия, индия и таллия почти не мешают другие компоненты, поэтому фотометрию пламе [c.377]


    Определение серебра в галлии. Основную массу галлия отделяют [224] экстракцией бутилацетатом из солянокислого раствора, после чего определяют серебро посредством дитизона. [c.182]

    Видно, что определению натрия, калия, рубидия, цезия, меди, кальция, стронция, алюминия, галлия, индия, скандия, лантана, европия, самария, иттербия, титана, сурьмы, ванадия, вольфрама, хрома, хлора, иода, марганца, железа, кобальта, практически не мешают другие элементы. Такие элементы, как серебро, магний, барий, кадмий, ртуть, золото, олово, мышьяк, селен, молибден, бром, никель, можно определять (с учетом вклада мешающего изотопа) по другим его гамма-липиям или другим гамма-линиям определяемых элементов. Серьезными конкурентами являются евроний, скандий нри определении цинка галлий — для кремния рубидий, золото — для германия бром, серебро — для мышьяка  [c.95]

    Описаны методики определения серебра в солях щелочных и щелочноземельных металлов , свинца , тиомочевине в металлическом кадмии, свинце З 7 -79 олове, мышьяке, арсениде галлия , гальванических покрытиях .  [c.45]

    Определение серебра в мышьяке и арсениде галлия . Используют графитовый (тип II) и насыщенный каломельный злектроды.  [c.46]

    При изучении извлечения теллура из солянокислого раствора в присутствии родамина С было показано , что наибольшая полнота извлечения достигается из 5—7% -ной соляной кислоты смесью бензола с эфиром в соотношении 2 1. Чувствительность реакции равна 0,5 мкг в 1 мл экстракта. В условиях, выбранных для определения теллура, галлий флуоресцирует сильнее теллура сурьма (III) и олово (II)—почти так же, как и теллур молибден, олово (IV) и рений—примерно в 10 раз слабее, а индий, таллий, ртуть и серебро—еш,е слабее. Некоторое свечение при содержании в. 5—10 -иг обнаруживают также свинец, селен, торий и цинк. Гашение флуоресценции теллура вызывают железо и ионы-окисли-тели—церий (IV), золото, ванадат и хромат. [c.364]

    Химико-спектральное определение серебра, алюминия, магния, индия, молибдена, циркония, железа, титана, меди, марганца, никеля, свинца, хрома, олова, висмута, галлия, кальция, цинка и сурьмы в трихлорсилане без применения гидролиза........... ..... 88 [c.522]

    Стибиды определенного состава образуются в сплавах сурьмы с никелем, а неопределенного — в силавах сурьмы и серебром и оловом. В сплавах сурьмы с галлием, индием и таллием получаются стибиды с полупроводниковыми свойствами. С активными металлами, а также с таллием образуются висмутиды определенного состава. [c.369]


    Пламя используют в качестве источника света в так называемом методе фотометрии пламени, а также как один из основных способов атомизации веществ в методе атомно-абсорбционного анализа (см. разд. 3.2). В зависимости от состава горючей смеси температура пламени может поддерживаться в интервале 2000—3000 К, что обеспечивает достаточно низкий предел обнаружения элементов, энергии возбуждения резонансных линий которых не превышают 5 эВ и соединения которых атомизируются в пламени в достаточной мере. Особое значение метод фотометрии пламени имеет для определения микроколичеств соединений щелочных и щелочноземельных металлов, для которых предел обнаружения этим методом находится в диапазоне 0,001 — 1 нг/мл. Предел обнаружения порядка 0,1—1 нг/мл достигается также для таких элементов, как европий, иттербий, свинец, медь, серебро, индий, таллий, хром, марганец, алюминий и галлий, причем в некоторых случаях в качестве аналитического сигнала используют молекулярную эмиссию пламени. Освоение высокотемпературных пламен (водородно-кислородного, ацетилен-кислородного) позволило значительно увеличить число определяемых элементов. [c.58]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Таллий. Метод спектрального определения алюминия, железа, меди, никеля, олова, серебра и свинца Таллий. Метод спектрального определения кадмия и цинка Галлий. Атомно-эмиссионный метод определения кадмия, свинца и цинка [c.822]

    Галлий. Химико-атомно-эмиссионный метод определения алюминия, висмута, индия, кадмия, кобальта, кремния, магния, марганца, меди, никеля, свинца, серебра, хрома, цинка и железа [c.586]

    При анализе силикатных пород автор рекомендует отделять галлий от мешающих определению элементов экстракцией хлорида галлия эфиром из солянокислого раствора после восстановления, железа серебром. [c.557]

    ХИМИКО-СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ АЛЮМИНИЯ, ВИСМУТА, ГАЛЛИЯ, ЖЕЛЕЗА, ЗОЛОТА, ИНДИЯ, КАЛЬЦИЯ, МАГНИЯ, МАРГАНЦА, МЕДИ, НИКЕЛЯ, СВИНЦА, СУРЬМЫ, ОЛОВА, СЕРЕБРА, ТАЛЛИЯ, [c.119]

    ХИМИКО-СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ МЕДИ, КАДМИЯ, ЦИНКА, СЕРЕБРА, СВИНЦА И ЗОЛОТА В АРСЕНИДЕ ГАЛЛИЯ  [c.159]

    Относительная чувствительность определения примесей составляет для серебра — 5-Ю- % марганца и меди — 1 10 % висмута и галлия — 2 Ю- % никеля и свинца — 5 Ю- %, кобальта — 2 10" %, железа, алюминия и магния — при использовании для анализа 2 г пробы. [c.434]

    Каталитический метод [1102] основан на способности ионов серебра ускорять реакцию окисления марганца(П) персульфатом аммония до перманганата. Свинец предварительно осаждают в виде PbSOi. Метод позволяет определить 1,5 10 % серебра с ошибкой 10%. Определению мешают галогенид-ионы и другие ионы, реагирующие с персульфатом (ванадий, хром). Определение серебра в мышьяке и арсениде галлия [462]. Полярографическое определение с графитовым Электродом и насыщенным каломельным электродом проводится так. [c.185]

    При определении следов веществ находили применение все методы, используемые в химическом анализе, в том числе даже весовые методы. Например, менее 0,001% галлия в алюминии определяли весовым путем в навеске в 50 е . Иногда для определения следов веществ пригодны объемные методы (определение серебра, иода и т. д.), особенно если конечная точка титрования определяется потенциометрически. Может найти приме- [c.20]

    Рекомендованные В. Г. Горюшиной и другими (в Гиредмете) фотометрические методики определения микропримесей основаны главным образом на использовании известных ранее высокочувствительных и избирательных цветных реакций, образуемых примесными элементами с различными органическими и — реже — неорганическими реагентами. В качестве примера можно назвать дитизон, использованный для определения серебра, золота, ртути и других элементов, диэтилдитиокарбами-нат свинца — для меди, а-фурилдиоксим — для никеля, батофенантро-лин — для железа. Большое значение имели реакции образования восстановленных гетерополикислот, используемые при определении фосфора, мышьяка и кремния, или реакция образования роданида железа, удобная для определения данной примеси в некоторых материалах высокой чистоты (галлий, индий, их соединения и др.). Чувствительность всех этих методов в фотометрическом или спектрофотометрическом вариантах лежит, как правило, на уровне 10 %. [c.12]


    Лабораторная методика химико-спектрального определения серебра,30лота бария,кобальта, меди.висмута.галлия, индия.марганца,никеля,титана. хрома.свинца.стронция,цинка по норме 1.10 алюминия, "машйя. железа по норме [c.65]

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]

    Радиоактивационный метод анализа. Метод основан на облучении испытуемого материала элементарными частицами, причем вследствие ядерных реакций возникают радиоактивные изотопы определяемых элементов или новые радиоактивные элементы. После облучения определяют содержание радиоактивных компонентов ядерной реакции. Для этого в простейших случаях используют непосредственно измерение радиоактивности материала после облучения, учитывая природу излучения, его энергию и период полураспада изотопа. Так, например, определяют содержание примеси меди в металлическом серебре. При облучении образца серебра посредством а-частиц медь (Си ") превращается в радиоактивный изотоп галлия (Са° ). который излучает позитроны и характеризуется периодом полураспада 9,6 часа. По интенсивности излучения этого изотопа галлия рассчитывают содержание меди в образце серебра. При облучении, вследствие ядерной реакции, из основного материала — серебра образуется два радиоактивных изотопа иидия, однако их период полураспада велик, поэтому радиоактивность мала таким образом, эти изотопы не мешают определению меди. [c.21]

    Предварительное концентрирование металла в объем ртутного микроэлектрода обычно проводят при потенциале предельного тока восстановления исследуемого иона. Этим путем можно получить амальгамы металлов I и II групп периодической системы, редкоземельных элементов, а также таллия, индия, галлия, цинка, кадмия, свинца, висмута, алюминия, меди, серебра и золота (рис. 11.1). Однако щелочные металлы имеют столь отрицательные потенциалы восстановления, что их концентрирование из водных растворов практически невозможно. Как правило, эти металлы определяют в органических средах, например, в диметилформамиде на фоне четвертичных аммониевых солей. То же в значительной степени относится и к щелочноземельным металлам. Кроме того, из-за близости потенциалов окисления металлов I и II групп нельзя ожидать высокой селективности при огфеделении данных ионов. Поэтому метод ИВА практически не применяется для определения щелочных и щелочноземельных металлов. [c.417]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]

    Чжен Гуан-лу [304] разработал быстрый и точный прямой метод определения небольших количеств индия титрованием раствором динатриевой соли этилендиаминтетрауксусной кислоты при pH 2,3—2,5 или при pH 7—8 в присутствия 1-(2-пиридил-азо)-2-нафтола. Пря pH 2,3—2,5 не мешают щелочные и щелочно-гемельные металлы, алюминий и марганец. При pH 7—8 не мешают медь, цинк, кадмяй, никель, серебро, ртуть и некоторые другие элементы, если к титруемому раствору добавить достаточное количество цианида калия. Трехвалентное железо связывают фторидом калия в присутствии тартрата и небольших количеств цианида. Не мешают хлориды, сульфаты, нитраты, перхлораты, фториды, тартраты и цитраты. Мешают свинец, висмут, галлий и олово. [c.107]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Катионы алюминия, сурьмы, мышьяка, бария, бериллия, висмута, бора, кадмия, кальция, церия (III), хрома (III), галлия, германия, железа (III), ланггана, свинца, магния, марганца, ртути (II), молибдена, никеля, ниобия, серебра, стронция, тантала, тория, титана, таллия, олова (IV), вольфрама, урана (VI), ванадия (V), цинка и циркония не мешают определению 10— 15 мкг кобальта, если каждый из них присутствует в количествах, не больших чем 0,1 г [1255]. [c.137]

    Определение кобальта в виде комплекса с пиридин-2,6-дикарбоновой кислотой С5Нз (СООН)2 [813]. Ионы двухвалентного кобальта легко окисляются броматом калия в азотнокислой или сернокислой среде в присутствии пиридиндикарбоновой кислоты, образуя окрашенный в красный цвет анионный комплекс трехвалентного кобальта, в котором на один ион кобальта приходится две молекулы реагента. Комплекс имеет максимум поглощения при 514 ммк и молярный коэффициент погашения при этой длине волны, равный 672. Можно определять 2—100 мг мл Со. Комплекс устойчив по отношению к ионам двухвалентного олова и тиогликолевой кислоте это позволяет определять кобальт в присутствии трехвалентного марганца, который также образует окрашенный комплекс, но легко восстанавливается при действии указанных восстановителей. Не мешают катионы меди, железа и никеля, а также щелочноземельных металлов, алюминия, кадмия, ртути, галлия, индия, свинца, сурьмы, мышьяка, висмута, титана, циркония, цинка, ванадия, церия, тория, хрома, серебра, анионы перманганата, молибдата, вольфрамата, хромата. [c.145]

    Другой вариант метода концентрирования с использованием пирролидиндитиокарбамината натрия состоит в следующем [1365]. Почву обрабатывают смесью растворов фтористоводородной и хлорной кислот. Остаток растворяют в соляной кислоте. К раствору прибавляют 20 м.л 15%-ного раствора сульфосалициловой кислоты, нейтрализуют раствором гидроокиси аммония при рн 4,8, приливают 15 м.л 5%-ного раствора пирролидиндитиокарбамината натрия и экстрагируют три раза хлороформом. Из объединенных экстрактов удаляют хлороформ выпариванием и остаток используют для спектрального определения кобальта и других микроэлементов — серебра, меди, кадмия, цинка, галлия, индия, свинца, олова, ванадия, молибдена, никеля, железа, палладия. [c.213]

    Трудности цри определении мышьяка методом эмиссионной спектро-скошш связаны с недостаточной чувствительностью его линии и с тем,что, с одной стороны, это легколетучие, а с другой стороны, трудновозбудимые элементы Г 4,5 Л. Для снижения пределов обнаружения мышьяка используют специальные цриемы трименение приборов большой дисперсии и разрешащей силы, разрядных трубок с полым катодом, введение добавок-оксида галлия, хлорида серебра,фторида натрия Г 4 2, испарение из камерного электрода Г 6,7 7. [c.87]

    Для определения галлия в почвах пробы прокаливают при 450° С для удаления органических веществ. Остаток тщательно смешивают с графитовым порошком, содержащим серебро и палладий (внутренний стандарт), помещают образец в графитовый катод и возбуждают спектр в дуге постоянного тока [663, 1013] Остаток после прокаливания можно сплавить с НагСОз и после растворения плава в НС1 и удаления S1O2 определить галлий в растворе, используя палладий и германий в качестве внутреннего стандарта [544] [c.190]

    Овенс [3] определял примеси после отделения галлия экстракцией с диизопропиловым эфиром. Чувствительность определения алюминия, кальция, магния, свинца, хрома, меди, никеля, кобальта, серебра, цинка и кадмия составляет 1,2—6 10 %. [c.200]

    Колориметрическое определение меди про водилось по реакции с дитизоном, никеля— с а-фурилдиоксимом, кобальта — с нитрозо-Р-солью, серебра и платины — колориметрическим титрованием с дитизоном, висмута — с тиомочевиной, марганца — по реакции с персульфатом аммония в присутствии серебра. Чувствительность определения этих микропримесей из навески 10 г после отделения галлия трехкратной экстракцией бутилацетатом из 1Ъ мл а М НС1 составляет 1-10-в —5-10- %. [c.206]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    Колориметрические определения Ag, Hg, РЬ, 1п, Оа, Зе, Те, Со, Мп и В1 возможны также при соответствующих операциях отделения от мешающих элементов. Серебро и свинец следует определять по реакции с дитизоном [20], индий и галлий после экстракции соответственно с 8-ок-сихинолином [21] и люмогаллионом [22]. В лучах ультрафиолетового света возможно флуоресцентное определение индия и галлия с кверцети-ном [23] соответственно с чувствительностью 1 10 % и 5-10 %, выделив экстракцией вначале галлий из солянокислого раствора, а затем индий из раствора бромидов. Селен и теллур могут быть сконцентрированы в аммиачном растворе на гидроокиси железа и определены по цветным реакциям соответственно с 3,3 -диаминобензидином и бутилродамином Б. Определение кобальта возможно по реакции с нитрозо-К-солью, марганца по каталитической реакции с серебром в присутствии окислителя, а висмута по образованию комплекса с тиомочевиной. Ртуть также может быть определена фотоколориметрическим методом по реакции с дитизоном [20] или с тиураматом меди [24]. В последнем случае определению ртути мешает только серебро. [c.385]


Смотреть страницы где упоминается термин Определение серебра галлии: [c.173]    [c.46]    [c.213]    [c.185]    [c.362]    [c.669]   
Аналитическая химия серебра (1975) -- [ c.182 , c.196 , c.206 ]




ПОИСК





Смотрите так же термины и статьи:

Галлай

Галлий

Галлий определение

Галлы



© 2024 chem21.info Реклама на сайте