Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коалесценция в системах жидкость жидкость

    Пены и эмульсии — это дисперсные системы, которые состоят соответственно из газа, диспергированного в жидкости, и жидкости, диспергированной в другой жидкости. В отличие от золей, представляющих собой частицы твердого вещества, диспергированного в жидкости, пены и эмульсии характеризуются тем, что межфазная граница в них разделяет два вещества, обладающие текучестью. По этой причине форма частиц в этих системах определяется условием минимума поверхности при данном объеме. В разбавленных пенах и эмульсиях частицы дисперсной фазы приобретают сферическую форму. При более высокой концентрации дисперсной фазы ее частицы вследствие взаимного сжатия деформируются, образуя определенного вида полиэдры (в монодисперсных системах образуются правильные гексаэдры). Процесс разрушения дисперсной системы в пенах и эмульсиях не ограничивается только слипанием частиц (коагуляцией), но может продолжаться до полного их слияния, т. е. коалесценции. [c.221]


    Проблема разделения фаз важна не только в связи с экстракционными, но и с любыми другими процессами с участием дисперсий жидкость — жидкость, например при очистке сточных вод. Такие дисперсии, подобно другим дисперсным системам, обычно термодинамически неустойчивы. Это обусловлено наличием избыточной свободной энергии, связанной с большой межфазной поверхностью. Последняя может уменьшаться вследствие агрегации или коалесценции диспергированной фазы. Таким образом, коалесценция энергетически выгодна особенно в бинарных системах и происходит до тех пор, пока не образуются два слоя жидкостей. Однако это относится к области кинетики, которая является в высшей степени важной для рас гета и проектирования аппаратуры. [c.258]

    При накоплении на поверхности раздела фаз в системе жидкость-жидкость посторонних примесей взвешенный слой капель может разрушаться. Для того чтобы предотвратить этот процесс в работе [170] предложена распылительная колонна специальной конструкции с расширяющейся верхней частью. В такой колонне увеличение скорости коалесценции на поверхности раздела приводит к понижению этой поверхности в конической части колонны, что в свою очередь уменьшает площадь поверхности раздела и восстанавливает скорость коалесценции, не давая возможности плотному слою разрушаться. [c.99]

    Исходя из сложной природы механизмов коалесценции представляется интересным связать два вида коалесценции как отношение их времен для оценки фазового разделения в зоне плотной упаковки капель дисперсной фазы в системе жидкость—жидкость. Обычно предполагается, что в дисперсном слое переменные, влияющие на коалесценцию капля—капля и капля—поверхность раздела, одни и те же для данного размера капель. На этой основе возможно дать теоретические выражения для времен контакта. Так, уравнение для времени стенания пленки в модели жесткая сфера—плоскость записывается [39] [c.292]

    При некоторых условиях (повышенное давление, небольшой, но не менее 100 мкм размер частиц, определенный интервал концентраций) идеальные течения имеют место в системах твердые частицы - газ. Очень часто идеальные течения наблюдаются в системах жидкость-жидкость. Это связано с относительно небольшой скоростью движения капель, а также с их способностью распадаться при достижении некоторого критического размера, так что коалесценция, всегда присутствующая [c.86]


    При контактировании твердых частиц с жидкостью коалесценция не происходит, и существуют два гидродинамических режима с разными значениями Й (см. гл. 4). Для обеспечения стабильной работы противоточных колонн в системах жидкость— жидкость обычно выбирают режим с 0 20%, и лишь в системах с высокой вязкостью значение О может достигать 40—45%. [c.42]

    Опыты 16] показали, что уменьшение d p пропорционально и,-о.б также указывает на иной характер зависимости среднего диаметра капель от скорости потока. Трудность поиска обобщающих уравнений для расчета среднего диаметра капель обусловлена рядом факторов. Прежде всего это связано с существенной ролью в механизме диспергирования пристенных слоев жидкости и с наличием в реальных аппаратах застойных зон, где коалесценция превалирует над актами дробления. Немаловажную роль играют и адсорбционные явления на поверхности капель, изменяющие их межфазное натяжение. Поэтому при определении среднего размера капель или удельной поверхности контакта фаз системы жидкость—жидкость наиболее надежные результаты могут дать опыты, проведенные на модели аппарата, условия работы которой максимально приближены к реальным. [c.61]

    В случае образования критических эмульсий при нагревании двух несмешивающихся при обычной температуре жидкостей невозможность растворения вплоть до молекул объясняется двумя одновременно протекающими, но противоположно направленными процессами. С одной стороны, идет диспергирование вплоть до молекул одной из фаз, а с другой — одновременно происходит коалесценция капелек этой фазы, в результате чего устанавливается динамическое равновесие, которое тотчас нарушается с изменением температуры. Конечно, состояние критической эмульсии также соответствует минимальной свободной энергии системы. [c.239]

    КОАЛЕСЦЕНЦИЯ В СИСТЕМАХ ЖИДКОСТЬ — ЖИДКОСТЬ [c.20]

    Кривая должна быть получена экспериментально из данных по УС для данной системы жидкость — жидкость, так как величина С может изменяться примерно в 6 раз в зависимости от наличия массопередачи, ее влияния на физические свойства жидкостей, коалесценцию капель и т. п. [c.579]

    В уравнение ( .49) входит эмпирический поправочный коэффициент 0,23, которым учитываются вторичные эффекты, отражающие особенности системы жидкость — жидкость (подвижность поверхности раздела фаз, коалесценции капель) и конструкции аппарата (перемешивание жидкостей дисками ротора). [c.306]

    Размер частиц дисперсной фазы и распределение частиц по размерам определяются механизмом взаимодействия частиц дисперсной фазы. Основным типом взаимодействия в дисперсной фазе двухфазной системы жидкость—жидкость в аппарате с мешалкой являются коалесценция и дробление капель объемом Vj и Vj и концентрацией q и с . Когда две капли коалесцируют, то освобождается достаточно большое количество энергии, чтобы принять полное перемешивание в образовавшейся капле. Поэтому при дроблении образовавшейся капли [c.403]

    На практике явление срыва стационарного противоточного течения дисперсного потока при некоторых максимальных для данной системы значениях расходов фаз получило название явления захлебывания)). Физический смысл его заключается в следующем [26]. При однородном по д движении частиц в дисперсном потоке в среднем имеет место равновесие между силой тяжести с учетом выталкивающей силы Архимеда и силой сопротивления. Такое равновесие математически выражается уравнением (3.3.2.51) и может реализоваться при двух (или даже при трех) значениях концентрации частиц. При захлебывании оба равновесных состояния исчезают, так как сила сопротивления, действующая на частицы, становится больше движущей силы и условие равновесия перестает выполняться. При этом реальный дисперсный поток в зависимости от типа дисперсной системы ведет себя различным образом. В системе твердое вещество— жидкость захлебывание приводит к переходному (нестационарному) процессу, в результате которого дисперсная фаза выбрасывается из канала вместе со сплошной фазой. В системе газ—жидкость в среднем поток остается стационарным, однако начинается интенсивная коалесценция пузырей, которая приводит к переходу в пенно-турбулентный режим течения и снижению силы сопротивления, действующей на пузыри. В системе жидкость— жидкость может наблюдаться как выброс дисперсной фазы, так и интенсивная коалесценция капель с последующей инверсией фаз. [c.187]

    В настоящее время разработано достаточное количество моделей коалесценции капли у поверхности раздела фаз жидкость— жидкость. Уравнения моделей выводятся на основе макроскопических балансов массы, силы и энергии и уравнений изменения микроскопических объемов жидкости и изменения поверхностей раздела фаз. Граничные условия и выражения для потока вместе с уравнениями состояния позволяют замкнуть систему уравнений для данной физической ситуации. Однако обобщенная полная система уравнений сложна для решения. Поэтому использование аппроксимирующих решений различной точности является наиболее распространенным методом. К сравнительно простым моделям можно отнести модели жесткой капли и жесткой поверхности раздела [32] и модели с учетом деформации капли и поверхности раздела с образованием углубления в центре капли [33, 34]. В [351 показано, что модели коалесценции, основанные на представлении однородной пленки, отделяющей каплю от поверхности, приводят к степенной зависимости времени коалесценции капли, пропорциональной пятой степени эквивалентного диаметра. Эти модели отрицают влияние разности давлений, возникающих вследствие искривления пленки, и поэтому дают завышенные значения показателя степени. [c.290]


    Процесс коалесценции наблюдается в системе с большими концентрациями дисперсной фазы, а также в системах газ—жидкость (рис. П1-36), тогда как для эмульсий с небольшими концентрациями дисперсной фазы коалесценция чаще всего не наблюдается, поскольку время, необходимое для совершения жидкостью одной циркуляционной петли, слишком мало, чтобы могла наступить коалесценция. В последнем случае распределение диаметров капель во всем [c.145]

    Различают двухфазные течения с твердыми дискретными элементами (их размеры и форма не изменяются в ходе движения это, например, газовзвеси, суспензии, сюда же можно отнести и движущийся слой, рассмотренный в разд.2.7.3) и жидкостными либо газовыми элементами (здесь изменяются размеры и форма в результате коалесценции, диспергирования, деформации дискретных элементов это эмульсии, барботажные системы и др.). Ниже подробно рассмотрены некоторые течения с твердой дисперсной фазой и затронуты отдельные аспекты течений жидкость — жидкость и газ — жидкость. [c.249]

    Искусственные эмульсии обычно получают путем диспергирования — энергичного перемешивания смеси двух взаимно нерастворимых жидкостей. Образующиеся капли жидкостей двух видов в обеих фазах в размешиваемой системе растягиваются в струи. При достаточной степени растягивания (удлинения) капли приобретают неустойчивую форму и дробятся. Таким образом, возрастает дисперсность. С увеличением числа капель увеличивается и вероятность их обратного слияния, так что любое диспергирование приводит к установлению стационарного состояния, характеризующегося определенной, максимально возможной степенью дисперсности и определенным распределением капель по размерам. Это предельное состояние существенно зависит от наличия в смеси препятствующих коалесценции стабилизаторов, называемых эмульгаторами. Увеличение дисперсности в разбавленной эмульсии приводит к повышению ее устойчивости за счет снижения скорости седиментации. Например, молоко, подвергнутое дополнительному диспергированию, во время длительной транспортировки не образует сливок. Для получения эмульсий используют различные аппа- [c.240]

    Видимо, по массопередаче в газожидкостных псевдоожиженных слоях было опубликовано всего лишь два исследования. В нервом из них измеряли скорость абсорбции водой двуокиси углерода из смеси ее с азотом. В качестве твердой фазы использовали частицы кремнезема (эквивалентный диаметр 0,22 мм) и стеклянные шарики (0,5 и 0,8 мм). Количественных корреляций, например, в виде коэффициентов массообмена предложено не было, но можно отметить ряд качественных особенностей процесса. Скорость абсорбции повышается с ростом скорости жидкости для частиц всех размеров и понижается с увеличением размера частиц для всех скоростей жидкости. Скорости абсорбции были ниже измеренных в аналогичной газожидкостной системе, не содержаш ей твердых частиц. Эти выводы отчасти подтверждаются рассмотренными ранее данными о коалесценции пузырей .  [c.673]

    В газовых эмульсиях с невысокой вязкостью дисперсионной среды скорость седиментации настолько велика, что маскирует рассматриваемые здесь процессы. Кроме того, в некоторых видах газовых эмульсий значительна коалесценция. И только в дисперсных системах жидкость—газ с малой скоростью седиментации и устойчивых к возникновению коалесценции заметным становится перераспределение пузырьков по размерам, вызванное молекулярной диффузией. Наиболее полно это изучено в применении к процессам в растворах и расплавах полимеров [24, 25, 133], в частности, для вискозы (см. рис. П1.3). [c.91]

    Эмульсии — системы, состоящие из жидкости и распределенных в ней капель другой жидкости, не смешивающейся с первой. Размер частиц дисперсной фазы может колебаться в широких пределах. Под действием силы тяжести эмульсии расслаиваются, однако при незначительных размерах капель (менее 0,4—0,5 мкм) или при добавлении стабилизаторов эмульсии становятся устойчивыми и не расслаиваются в течение длительного времени. С увеличением концентрации дисперсной фазы появляется возможность обращения (инверсии) фаз. В результате слияния (коалесценции) капель дисперсная фаза становится сплошной в ней оказываются взвешенными частицы фазы, бывшей до этого внешней. [c.176]

    В дисперсной системе жидкость — пузырьки газа при дегазации происходят следующие основные процессы [24—26, 28, 35, 133, 161, 162] изменение размера пузырьков дисперсной фазы при изменении внешних условий (температуры, давления) седиментация пузырьков перераспределение пузырьков по размерам под влиянием сил поверхностной энергии коалесценция пузырьков образование и разрушение пены. [c.116]

    При интенсивных режимах барботажа и в высокодисперсных системах газ — жидкость закономерности движения отдельных пузырей или капель нарушаются, поэтому они не описывают группового движения пузырей и капель. При интенсивных режимах течения газожидкостных систем в результате динамического взаимодействий фаз, приводящего к дроблению и коалесценции пузырей и капель, образуются энергетически наиболее устойчивые пузыри [c.160]

    В жидкостных системах для межфазной поверхности предложены соотношения, в которые входит безразмерный критерий Вебера Уе. Он представляет собой отношение динамического давления жидкости, стремящегося разрушить каплю, к противостоящим ему силам поверхностного натяжения, способствующим их коалесценции. Следовательно, при жидкостной экстракции можно ожидать, что межфазная поверхность, определяющая массопередачу, увеличивается с увеличением критерия Вебера. [c.172]

    Важным типом коллоидных систем являются эмульсии — высокодисперсные системы, в которых дисперсная фаза и дисперсионная среда являются жидкостями. Образование таких систем возможно при нерастворимости или очень ограниченной растворимости одной жидкости в другой. В зависимости от условий каждая из фаз может быть либо дисперсионной средой, либо дисперсной фазой. Например, из масла и воды могут быть получены эмульсии двух типов масло в воде и вода в масле . Агрегативная устойчивость эмульсий повышается введением специальных веществ — эмульгаторов, адсорбирующихся на поверхности капель и препятствующих пх слиянию — коалесценции. [c.425]

    Книга Последние достижения в области жидкостной экстракции под редакцией К. Хансона, изданная в 1971 г., представляет собой обзор важнейших работ по теории и практике экстракции, выполненных главным образом за последние годы, в котором процесс экстракции рассматривается во всем его многообразии. Отдельные главы посвящены химии экстракционных процессов, массопередаче, в том числе массопередаче, осложненной химической реакцией, явлениям на границе раздела фаз, коалесценции капель, типовому промышленному оборудованию и его расчету и т. д. По рекомендации Научного совета по теоретическим основам химической технологии мы опустили при переводе некоторые главы из книги (например, Функции отклика и контроль за экстракционными процессами , Одновременная тепло- и массонередача и Теплопередача при прямом контакте жидкость — жидкость ). В то же время мы сочли необходимым дополнить русский текст книги главой Кинетика экстракции в системе электролит — неэлектролит , учитывая развитие этого направления- у нас в стране и за рубежом и его перспективы для выяснения тонкого механизма экстракции и интенсификации экстракционных процессов. [c.9]

    Величина ] представляет собой сумму межфазной поверхностной энергии определяемой состоянием монослоя на границе фаз, и свободной энергии /о вблизи поверхности, т. а. / = /а+ / . Объемно-поверхностный вклад обусловлен изменением состояния слоев жидкости вблизи поверхнос-ти раздела фаз. Несмотря на то что вообще > fv, устойчивость системы в большинстве случаев связана именно с изменением так как при образовании агрегатов из твердых частиц граница раздела фаз обычно не исчезает. Поэтому в ходе коагуляции величина а остается практически постоянной, а изменяется причем степень изменения зависит от уменьшения расстояния между частицами. Конечно, все это не относится к эмульсиям, где имеет место коалесценция, то есть слияние частиц с полной ликвидацией первоначально разделяющей частицы межфазной поверхности. [c.19]

    Некоторые важные работы выполнены Ритема [9—12] и посвящены исследованию реакций в системе жидкость — жидкость. Основная мысль исследователя заключается в том, что коалесценция п диспергирование оказывают определяющее влияние на массоперенос, сопровождающийся химической реакцией, в системе жидкость — жидкость. Поэтому все реакции, кроме самых медленных, контролируются массопередачей. Ритема [9] рассматривает степень дисперсности и влияние поверхностно-активных веществ (ПАВ). Результаты исследования в реакторе периодического действия представлены для системы бензол — вода перемешиваемой со скоростью 1300 об/мин. Степень дисперсности контролировали по интенсивности проходящего света. Показано, что равновесный размер капель не был достигнут в течение 6 ч. Это, очевидно, выдвигает серьезные сомнения в возможности проектирования непрерывных реакторов на основе данных, полученных в реакторе периодического действия. [c.362]

    Наконец, капля, покоящаяся на поверхности между двумя жидкими фазами, может коалесцировать нацело или частично, образуя вторую, более мелкую каплю, которая ведет себя подобным же образом. Такая частичная коалесценция может повторяться до шести-семи раз. Это явление названо ступенчатой коалесценцией. На него впервые обратили внимание Варк и Кох [6], которые изучали пенную флотацию, и несколько позже Махаган [7], проводивший эксперимент на системах воздух — жидкость. В дальнейшем это явление наблюдали многие исследователи. [c.260]

    В области 4 наблюдаются нерегулярная коалесценция капель и периодическая инверсия фаз. Скорости экстракции при этом режиме работы экстрактора цизкие. Дальнейшее увеличение частоты пульсаций приводит к захлебыванию экстрактора вследствие образования стойкой эмульсии (область 5). Переход от одного режима работы аппарата к другому происходит постепенно и непрерывно, а форма областей, показанных на рис. 303, может значительно изменяться в зависимости от свойств системы жидкость — жидкость и конструкции аппарата. [c.593]

    Экстракция в период коалесценции капель. Скорость процесса в этот период наименее изучена. Лихт и Конвей, изучавшие массопередачу при коалесценции капель на трех различных системах жидкость — жидкость, нашли, что количество вещества, переходящего из фазы в фазу в этот период, составляет 6—13% от предельного, отвечающего состоянию равновесия. При этом количества вещества, переходящие из фазы в фазу, оказались примерно одинаковыми в периоды образования и коалесценции капель. Джонсон и Хемилек предложили теоретическую модель процесса, применимую для тех случаев, когда основное сопротивление массопередаче при коалесценции сосредоточено в диспергируемой фазе. Ими было сделано допущение, что капли при осаждении мгновенно сливаются и образуют слой с равномерной первоначальной концентрацией вдоль сплошной поверхности, на которой происходит коалесценция. В этих условиях применимо уравнение Хигби [c.461]

    Нарушение устойчивости Э. связано с протеканием в системе процессов седиментации, коагуляции капель, их слияния (см. Коалесценция) и диффузионного переноса в-ва от малых капель к более крупным (оствальдово созревание, изотермич. перегонка, переконденсация). Седиментация в фубодисперс-ных Э. может бьггь прямой или обратной (образование сливок ) в зависимости от соотношения плотностей жидкостей, служащих дисперсионной средой и дисперсной фазой. Для предотвращения седиментации проводят дополнит, диспергирование (гомогенизацию) Э. или вводят добавки, выравнивающие плотности фаз. Устойчивость к коагуляции м. б. достигнута при использовании ионогенных ПАВ в случае обратных Э. эффективно применение Ре- и Сг-солей высших жирных к-т. ции возможно I [c.479]

    Кинтнер [771 анализировал процесс коалесценции больших эллипсоидальных капель после утончения пленки сплошной фазы. Он предположил, что перемычка между каплями представляла собой эллиптический цилиндр, превращающийся затем в эллипсоидальную каплю (см. рис. 7-14). Приравнивая общее изменение кинетической энергии системы (обусловленное истечением дисперсной фазы в цилиндрическую перемычку и вытеснением жидкости сплошной фазы, а также образованием волн) изменению поверхностной энергии, он получил уравнение для расчета средней скорости расширения перемычки — V. [c.285]

    Диспергирование жидкости в жидкости (подробнее см. в подразделе 8.2). При перемешивании двух несме-шиваюшихся жидкостей происходит диспергирование одной из них в другой с образованием полидисперсной системы. Одновременно с процессом диспергирования идет и процесс коалесценции капель жидкости. Анализ этого процесса в условиях турбулентного режима течения смеси [3, 17, 18] с учетом экспериментальных данных (ф = 0,05+0,1) привел к расчетному уравнению  [c.323]

    Стабильность эмульсий определяется сопротивлением, оказываемым системой процессу коалесценции капель. На скорость отстаивания фаз влияет частота столкновения капель и особенности процесса коалесценции. Стабильные эмульсии обычно содержат капли размером менее 1 —1,5 мкм. Большое влияние на стабильность эмульсии оказывают поверхностноактивные вещества и твердые взвеси. Присутствие поверхностно-активных веществ влияет на поверхностное натяжение капель. Другими факторами, влияющими на скорость коалесценции, являются вязкость жидкостей и направление процесса экстракции (к каплям или из капель). При отстаивании фаз после перемешивания первичный распад эмульсии происходит сравнительно быстро, причем жидкость распадается на три слоя верхний (легкий), средний (промежуточный) и нижний (тяжелый) в дальнейшем во втором периоде распада эмульсии, который начинается после исчезновения промежуточного слоя, происходит медленное доосаждение капель. [c.73]

    В системе газ—жидкость захлебывание, как правило, проявляется в виде начала интенсивной колесценции пузырей и последующего перехода в пенно-турбулентный режим [94]. В системе жидкость—жидкость может наблюдаться как выброс дисперсной фазы [156, 166—168], так и интенсивная коалесценция капель [156, 169]. Некоторые исследователи при расходах фаз, близких к захлебыванию, наблюдали обращение фаз [166, 168]. Вблизи точки захлебывания иногда может происходить самопроизвольный переход первого режима во второй, что дало основание некоторым авторам определять точку захлебывания в распылительных колоннах как момент образования плотного слоя капель [163]. Нетрудно догадаться, что явление захлебывания связано с бифуркацией равновесных состояний динамической системы (2.78), моделирующей стационарное движение идеального дисперсного потока. [c.96]

    От типичных лиофобных эмульсий следует отличать так называемые критические—лиофильные эмульсии. Критические эмульсии — это системы, образующиеся обычно из двух ограниченно смешивающихся жидкостей (например, анилина и воды, йзоами-лового nnpTa и воды) при температурах, весьма близких к критической температуре смешения, когда поверхностное натяжение на границе фаз становится весьма малым (порядка 0,01 эрг/см ) и теплового движения молекул уже достаточно для диспергирования одной жидкости в другой. В результате такого самопроизвольного диспергирования образуется тончайшая эмульсия, в которой коалесценция отдельных капелек уравновешивается стремлением обеих жидкостей равномерно распределиться в объеме (см. гл. VIII, разд. 1).  [c.368]

    Эмульсии, как и все коллоидные и микрогетерогенные системы, агрегативно неустойчивы из-за избытка свободной яне.пгии на межфазной поверхности. Агрегативная неустойчивость эмульсий проявляется в самопроизвольном образовании агрегатов капелек с последующим слиянием (коалесценцией) отдельных капелек друг с другом. В пределе это может приводить к полному разрушению эмульсии и разделению ее на два слоя, из которых один соответствует жидкости, образующей в эмульсии дисперсную фазу, а другой — жидкости, являющейся дисперсионной средой. [c.371]

    Стабилизаторы не только препятствуют обычному агрегированию частичек — коагуляции или коалесценции, но и предотвращают развитие коагуляционных структур, адсорбционно блокируя места сцепления частичек и препятствуя их сближению. Поэтому стабилизаторы суспензий являются также адсорбционными пластификаторами в виде очень малых добавок они понижают прочность структуры (структурную вязкость). Таким образом, добавки пластификатора (стабилизатора), разрушая пространственную сетку, снижают количество жидкой среды, которая не связывается молекулярными силами, но механически удерживается в ячейках структуры. Тем самым снижается во-допотребность, маслоемкость твердой дисперсной фазы, т. е. объем жидкости, минимально необходимый для получения однородного замеса на единицу объема твердой дисперсной фазы, с получением достаточно легкоподвижной предельно концентрированной пасты. Именно поэтому добавки поверхностно-активных веществ или поверхностная активность самого связующего обеспечивает минимальную маслоемкость пигментов е лакокрасочных системах, что повышает укрывис- [c.70]


Смотреть страницы где упоминается термин Коалесценция в системах жидкость жидкость: [c.166]    [c.709]    [c.296]    [c.689]    [c.182]    [c.79]    [c.92]    [c.102]   
Смотреть главы в:

Последние достижения в области жидкостной экстракции -> Коалесценция в системах жидкость жидкость


Последние достижения в области жидкостной экстракции (1974) -- [ c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Коалесценция

Системы газ жидкость

Системы жидкость жидкость



© 2024 chem21.info Реклама на сайте