Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидразины определение восстановлением

    Ход определения. 1 г пробы растворяют при нагревании в 10—15 мл соляной кислоты. Раствор окисляют небольшим количеством (3—4 мл) азотной кислоты. Затем добавляют 5 мл серной кислоты и жидкость выпаривают до выделения паров двуокиси серы. Остаток охлаждают, приливают 30—40 мл воды, нагревают до растворения солей, переносят в стакан емкостью 400—500 мл (электролизер) и разбавляют водой до 250 мл. Жидкость нагревают до 60—70° С и прибавляют 4 г гидразина (для восстановления железа). [c.296]


    Определение меди подробно описано в 4 Практические работы . Помимо метода внутреннего электролиза можно определять медь и электролитическим путем в присутствии сернокислого гидразина для восстановления железа. [c.171]

    Кулонометрическое титрование в гальваностатическом режиме может проводиться для реакций, которые проходят быстро и количественно, например для реакций нейтрализации, окисления-восстановления, комплексообразования, осаждения. Метод используется чаще всего для определения воды, хлорид-ионов, кислых и основных примесей в растворах и растворителях. Например, этот метод предложен [14] для микроопределения содержания хлора в каучуке в процессе его производства методом эмульсионной полимеризации. Кулонометрическое определение соединений с меркапто-, дисуль-фидными, нитрозо-, нитро-, азо-, амино-, гидразин-, гидразид- и другими функциональными группами отличается экспрессностью, высокой чувствительностью и селективностью [13]. [c.308]

    О бразование окрашенного в красный цвет соединения позволило разработать спектрофотометрический метод определения небольших количеств молибдена после его восстановления до пятивалентного состояния солянокислым гидразином [70]. [c.32]

    При определении примесей в ртути химико-спектральными методами следует предпочесть способ получения аналитического концентрата растворением ртути в азотной кислоте с последующим удалением ее восстановлением до металла гидразином, муравьиной кислотой и другими восстановителями. В методе удаления основной массы ртути отгонкой [706] возможны значительные потери некоторых примесей, обладающих значительной упругостью паров при температуре кипения ртути. При отгонке ртути улетучиваются С(1, 2п, Т1, ЗЬ, некоторые металлы, находящиеся в поверхностных пленках в виде окислов, а также 3, Зе и Те, находящиеся в ртути в виде соединений с ней. При растворении ртути в азотной кислоте целесообразно ее распыление сжатым воздухом. [c.182]

    Описан [762] метод раздельного полярографического определения мышьяка(П1) и мышьяка(У) в катализаторах, основанный на последовательной отгонке мышьяка(П1) в виде хлорида и мышьяка(У) в той же форме после восстановления его гидразином до мышьяка(П1). [c.87]

    Для определения гидразидов можно также использовать без существенных изменений метод анализа гидразинов, основанный на восстановлении хлоридом титана(III). [c.512]


    Определению Ри этим методом сильно мешают только ГЬ, 2г и Н1. Если их количество в растворе равно 1—2% от содержания Ри, то необходимо их отделение. Оно может быть осуществлено предварительным восстановлением всего плутония до Ри(П1) и экстракцией и(У1), ТЬ, 2г, Н1 раствором ТБФ из азотнокислого раствора или восстановительной реэкстракцией плутония в виде Ри(П1) из органического экстракта, содержащего Ри(1У), ТЬ, 2г и НГ, раствором подходящего восстановителя (гидрохинон, гидразин, ЗОа и др.). [c.153]

    Основное различие применяемых методик заключается в способе выделения и предварительного восстановления сурьмы. Льюк 2 выделял мышьяк, сурьму и олово из свинцовых сплавов с помощью двуокиси марганца. После восстановления сульфатом гидразина и выделения двуокиси серы автор удалял мышьяк дистилляцией его в виде трихлорида. Затем в остатке титровали 5Ь , а олово переводили в двухвалентное и определяли, титруя иодом. Льюк з анализировал сплавы олова, восстанавливая до 5Ь двуокисью серы. Мак-Кей восстанавливал 5Ь ртутью в растворе соляной кислоты, мышьяк (V) при этом не восстанавливался. Образовавшуюся каломель отфильтровывали, фильтрат титровали, как обычно. При выполнении определения методом Мак-Кея присутствующая медь восстанавливается до Си , которая до титрования окисляется на воздухе. При этом часть 8Ь , по-видимому, подвергается индуцированному окислению воздухом, так как результаты оказываются пониженными. Употребляя серебряный редуктор и затем определяя Си и 5Ь путем потенциометрического титрования, можно избежать окисления воздухом, что, по-видимому, улучшает результаты. Сурьма часто выделяется в виде [c.473]

    Сильные окислители мешают определению, так как. окисляют дитизон. Их восстановление гидразином включено в ход определения. [c.299]

    В щелочной среде, содержащей цианид, дитизоном экстрагируются вместе со свинцом таллий, висмут и двухвалентное олово. Олово и висмут удаляют экстрагированием в кислой среде. К пробе после восстановления гидразином (см. ход определения) и после [c.140]

    Определение нитратов после восстановления до нитритов гидразином [c.29]

    Определение основано на восстановлении нитратов до нитритов гидразином в щелочной среде при температуре 28° С в присутствии ионов меди в качестве катализатора. [c.29]

    Определение меди в снлавах на основе же еза и алюминия. Навеску силава (1 г при содержании меди 0,1—1% и 0,2 г ири содержан1И1 меди 1 —Ю7о) растворяют в предварительно взвешенной чашке или тигле из стеклоуглерода в 20 мл концентрированной соляной кислоты ири нагревании на песчаной бане. Затем прибавляют ио каилям концентрированную азотную кислоту до прекращения вспенивания, иосле чего прибавляют 4 мл серной кислоты (1 1), выпаривают до паров SO3, охлаждают, прибавляют 20 мл дистиллироваанной воды, добавляют 0,5 г сернокислого гидразина для восстановления Fe + до Fe + и 4 мл серной кислоты (1 4), нагревают до 60—70 °С и далее проводят электролиз, как описано выше. [c.90]

    Элементарный иод можно легко определить после предварительного восстановления на холоду гидразином. Определению не мешают элементы, не осаждаемые родамином С. Висмут, железо, цинк, никель, индий, свинец, медь и ртуть могут присутствовать в большом избытке. Мешает определению иодид-ионов сурьма (П1), которая концентрируется на электроде одновременно с иодом в виде аналогичного соединения. Влияние сурьмы можно устранить, восстановив ее до элементарного состояния или связав в электронеак-тивный комплекс. Так, в присутствии 10% цитрата калия 100-крат-ные количества сурьмы(П1) не мешают определению иодид-ионов (концентрации Sb + и I-—6-10 и 6-10 г-ион/л). Максимальный ток электрохимического растворения осадка, содержащего иод, в этом случае несколько ниже, чем в отсутствие цитрат-ионов. При использовании калибровочных графиков или метода добавок это не имеет значения. [c.104]

    Точное определение небольших количеств титана требует отделения его от железа и ванадия, если они присутствуют. Тонко измельченную руду (2—5 г) нагревают в конической колбе емкостью 250 мл с концентрированной соляной кислотой на плитке после растворения окисных минералов железа добавляют немного азотной кислоты для разложения сульфидов, если они присутствуют. Раствор обрабатывают 25 мл H2SO4 (1 1) и выпаривают до появления сильных паров добавляют 10 г сульфата аммония и нагревают до получения прозрачного сплава. Его распределяют по стенкам колбы, дают охладиться и растворяют в 80 мл теплой воды и 5 мл H I. Раствор, не фильтруя, почти нейтрализуют разбавленным аммиаком, избегая появления осадка, и нагревают с достаточным количеством сернокислого гидразина до восстановления солей железа если надо, добавляют больше аммиака, чтобы сохранить низкую кислотность. Наконец, раствор кипятят с небольшим количеством гексаметилентетрамина до полной нейтрализации, чтобы получить осадок, в котором сконцентрирован весь титан. Осадок отфильтровывают вместе с нерастворимым остатком от кислотной обработки, промывают от солей железа горячей водой, содержаще  [c.169]


    Определение стероидных соединений с помощью За- и Зр,17р-ОСД основано на спектрофотометрическом измерении концеитрации восстановленного НАД (НАДН) в условиях реакции, благоприятствующих либо полному окислению, либо полному восстановлению кислородных заместителей, поскольку на моль окисленного или восстановленного стероида выделяется или потребляется стехиометрическое количество НАДН. Количественное окисление стероидов при этом достигается проведением реакции при высоких значениях pH и добавлением связывающего кетон реагента, например гидразина. Количественное восстановление стероидов было достигнуто путем разрушения НАД" , образующегося в процессе реакции, НАД-нуклеозидазой из Neurospora. Этот метод, чувствительность которого достигает 1 х.М стероида, был применен для раздельного или совместного определения За-, Зр- и 17р-оксистероидов, а также 3- и 17-кетосте роидов в биологических смесях и хроматографических фракциях он применим также для определения чистоты стероидов и установления их пространственной конфигурации [152, 159, 194—196]. [c.134]

    Ход определения. Навеску сплава (1 г) растворяют в смеси 100 мл разбавленной (1 4) H2SO4 с 1 мл разбавленной (1 1) HN0.1. По окончании растворения навески к раствору прибавляют несколько миллилитров 10%-ного раствора сульфата гидразина (N2H4-H2SO4) для восстановления азотистой кислоты и окислов азота, мешающих осаждению меди на катоде. Разбавляют раствор до 150 мл, нагревают до 60—65° С и подвергают внутреннему электролизу. Для этого опускают в раствор электродную пару, состоящую из цинкового анода и платинового сетчатого катода , собранную, как показано на рис. 63. Предварительно тщательно зачищают контакты анода и катода, поверхность цинкового анода и хорошо закрепляют их в соответствующих клеммах. [c.451]

    Отгонка аммиака используется в широко известном методе определения азота в органических соединениях по Кьельдалю. В простейшем варианте этого метода пробу обрабатывают при нагревании концентрированной серной кислотой в присутствии солей ртути (катализатор), в результате чего органические соединения окисляются до СО2 и Н2О, а азот переходит в ЫН4Н504. После охлаждения к остатку добавляют раствор щелочи и отгоняют ЫНз в отмеренный объем титрованного раствора кислоты, а затем определяют избыток кислоты, не вошедшей в реакцию с аммиаком, и рассчитывают массу азота в пробе по формуле обратного титрования. Методом Кьельдаля можно определять азот в аминах, аминокислотах, алкалоидах и многих других азотсодержащих соединениях. Некоторые соединения можно проанализировать по методу Кьельдаля только после предварительного разложения или восстановления хлоридом олова (И) или цинковой пылью (азотсоединения, производные гидразина и т. д.) [c.215]

    Выделение интересующих (с одновременным удалением мешающих) классов органических соединений при анализе примесей в газах лежит в основе химических методов концентрирования (барботирование анализируемого газа через раствор специфического реагента). На этом принципе построена, например, методика определения в воздухе производственных помещений примесей альдегидов и кетонов Сз—С4 путем их связывания гидразином в моноалкилгидразоны с последующим восстановлением до соответствующих углеводородов по Кижнеру в хроматографической колонке-реакторе 132]. [c.194]

    В варианте кулонометрии с контролируемым потенциалом для определения Sb используют два способа, основанных на восстановлении Sb на ртутном электроде [1041]. По первому способу Sb(V) предварительно восстанавливают гидразином до Sb(III), которую кулонометрически восстанавливают до металлической Sb на фоне 1М НС1 + О,Л/винпой кислоты при потенциале —0,28 в. Метод предусматривает предварительную очистку фона электролизом при 0,0 в. При выполнении определения по второму способу электролитом служит смесь 6 М НС1 + Oi i М винной кислоты, предварительно очищенная электролизом при 0,35 в. Далее определение проводят последовательно, восстанавливая Sb(V) и Sb(III) при —0,21 и —0,35 в соответственно. Количество Sb(Ill) находят по разности между найденным содержанием Sb(III) при восстановлении ее при —0,35 в и содержанием Sb(V). Определению Sb не мешают As(III) и РЬ(П) мешает Си. [c.69]

    Как уже упоминалось в разд. Б, восстановление простых кетонов происходит при больших отрицательных потенциалах по сравнению с восстановлением альдегидов. Поэтому, за исключением редких случаев, кетоны не определяют непосредственно. С другой стороны, многие карбонилсодержащие соединения реагируют с различными аминами, гидразинами, гидроксиламинами и т. п. с образованием легко восстанавливаемых иминов и оксимов. Было обнаружено, что для определения широкого ряда альдегидов и кетонов особенно подходят два соединения — бутиламин [66] и се-микарбазид [67.  [c.104]

    Для определения малеингидразида Вуд [4] подвергал его восстановлению и гидролизу в присутствии воды, щелочи и цинка с целью отщепления гидразина. После этого он выделял гидразин перегонкой и определял его колориметрическим методом с применением п-диметиламинобензальдегида. Вуд отмечал, что в тех же условиях гидразин образуется и из бициклодисукцинилгидразида, но тем не менее данный метод не является общеприменимым. Фта-лилгидразид не дает гидразина в данных условиях. [c.324]

    Разработан титриметрический метод определения шестивалентного молибдена,, основанный на его количественном восстановлении небольшим избытком сульфата гидразина в среде 1—2 М НС1 при нагревании в течение 10 мин. на водяной бане [1239]. После охлаждения к раствору прибавляют соляную кислоту до концентрации 4 М, затем 5 мл сиропообразной Н3РО4 (на 50 мл раствора) и 0,5 мл 0,1%-ного раствора дифенилбензидина все титруют 0,05 N раствором сульфата четырехвалентного церия до появления фиолетового окрашивания. Пятивалентный молибден можно титровать также в среде 3 N НС1 после добавления 5 мл сиропообразной Н3РО4 в присутствии ферроина. Избыток гидразина не мешает титрованию пятивалентного молибдена. [c.202]

    Теммерман и Фербек [1143] исследовали процесс восстановления мышьяка методом импульсной полярографии и использовали в качестве фона раствор сернокислого гидразина с добавкой метиленового голубого. Чувствительность определения мышьяка составила 3-10 молъ/л. [c.84]

    Для определения мышьяка в других материалах, в том числе в металлах и их сплавах, пробу переводят в раствор подходящим способом, к полученному раствору прибавляют конц. НС1 до концентрации 9 Л/ и иодид калия до концентрации 0,25 М для восстановления As(V) до Аз(1П), затем мышьяк экстрагируют бензолом в виде трихлорида (3 раза по 15 мл). Экстракты объединяют, разбавляют бензолом до 50 мл, распыляют в пламя и фотомет-рируют линию As 235,0 нм. В присутствии железа(П1) в раствор перед экстракцией вводят 1 г NaHSOj или солянокислого гидразина. [c.107]

    Очень многочисленны реакции межмолекулярного (межион-ного) окисления-восстановления с участием брома, широко используемые в анализе. Из числа наиболее важных реакций следует упомянуть окисление J" до Jj, перекиси водорода до кислорода, тиосульфат-иона до сульфата, арсенит-иона до арсената, нитрит-иона до нитрата, аммиака или гидразина до азота, Сг(1П) до r(VI), Fe(II) до Fe(VI), в большинстве своем протекающих в щелочной среде. В кислой среде Fe(II) окисляется бромом до Fe(III), что используют в косвенных методах определения брома с применением в качестве титранта аскорбиновой кислоты [35] или гидрохинона [369]. Результаты исследования кинетики реакции окисления Fe(II) бромом сообщены в работе [708]. [c.17]

    Известны пробирные методы определения серебра в бедных рудах и продуктах цветной металлургии [57, ИЗ, 177] заключительное определение серебра производится фотометрическим методом с кристаллическим фиолетовым [177], весовым методом — в виде Ag l или в виде металлического серебра после восстановления солянокислым гидразином [57]. [c.179]

    Гидразины легко окисляются иодом, иодатами, периодатами и ионом Си +, что также служит основой аналитических методов. В гл. 13 описан метод определения одно- и двузамещенных гидразинов, основанный на восстановлении их хлоридом титана (III). Этот метод применим для анализа многих гидразинов, однако он малоспецифичен. Как указано в гл. 13, многие содержащие азот функциональные группы (нитро-, нитрозо-, азо- и диазогруппа) могут оказаться помехой при этом определении. [c.506]

    Перйодат калия применяли для определения следующих производных гидразина гидразида изоникотиновой кислоты, фенилгидразина, семикарбазида и тиосемикарбазида. Окисление проводили в хлористоводородной кислоте. Было установлено, что восстановление перйодата в однохлористый иод в зависимости от концентрации кислоты и характера определения протекает по следующему уравнению  [c.509]

    Определение в виде молибденовой сини. Восстановление фосфоро-молибдатного комплекса гидразин-сульфатом. Раствор 0,25 н. HNOj е=4800, Х=830 нм. Мешают Ва 11), Bi III), Sb(HI), Sn(II). Восстановление хлоридом олова (II) 0,25 и. HNO3 е=25000, Х=725 нм. Мешают As(III), Au(III), e(IV), Ge(IV), Sn(II), V(V), W(VI). Определяют 0,01—1 мкг в 10 мл раствора. [c.204]

    Для определения сурьмы существует два способа, основанные иа восстановлении определяемого компонента на ртутном электроде. Согласно первому варианту предварительно восстанавливают с помощью гидразина до ЗЬ , последнюю затем восстанавливают кулонометрически до металлической сурьмы при потенциале —0,28 в относительно насыщ. к. э. в электролите, 1 Л/ по соляной и 0,4 М по винной кислоте. Индиферентный электролит предварительно восстанавливают при потенциале —0,08 в. Выполняя анализ по второму способу, в качестве электролита применяют раствор, 0,4 М по винной и 6 М по соляной кислоте, предварительно восстановленный при потенциале —0,35 в. Восстановление ЗЬ и ЗЬ проводят при потенциалах соответственно [c.25]

    Мышьяк определяют по окраске молибденовой сини, образующейся при восстановлении арсекомолибдата аммония (44]. Количество мышьяка В О бразце не должно превышать 0,03 г. Его восстанавливают. до трехвалентного (Состояния и перегоняют в виде хлорида с целью отделения от нелетучих мешающих веществ. Дистиллят затем выпаривают досуха с азотной кислотой, вводимой для окисления мышьяка до Аз . Остаток обрабатывают раствором, содержащим сернокислый гидразин и молнбдат аммония, и нагревают для завершения реакции образования молибденовой сини. Фотометрическое измерение проводят с красным светофильтром. Описанную реакцию можно применять также для определения фосфата, силиката и германата, а также арсената. [c.55]

    Хемилюминесцирующие вещества — люминол, лофин, люцигенин, силоксен — широко применяют в качестве хемилюминесцентных индикаторов объемного анализа в окислительно-восстановительных реакциях и в реакциях нейтрализации [24, 25]. Применение их основано на том, что свечение возникает (или исчезает) лишь при соблюдении опреде,яенных условий, как, например, определенного окислительно-восстановительного потенциала и значения pH. Так, в методе окисления — восстановления при титровании гипобромитом определяют арсенит, сурьму (П1), сульфит, сульфид, тиосульфат, цианид, роданид [26], используя в качестве хемилюминесцентного индикатора люминол. Гипохлоритом можно титровать арсенит при 80° С, сульфат гидразина, тиосульфат [27]. Аналогично можно титровать [c.84]

    Мешающие влияния. В щелочной среде, содержащей цианид, дитизоном экстрагируются вместе со свинцом таллий, висмут и -олово (II). Таллий не мешает колориметрическому определению. Олово и висмут удаляют экстрагированием в кислой среде. К пробе после восстановления гидразином и после охлаждения прибавляют 20 мл раствора тартрата натрия pH доводят до 2,5—3 винной кислотой, добавляемой по каплям (проверяют потенциометрически). Пробу затем количественно пе реносят в делительную воронку и экстрагируют порциями по 5 мл 0,1%-ного хлороформного раствора дитизона до тех пор, пока зеленая окраска дитизона не перестанет изменяться. После этого продолжают экстракцию порциями по 5 мл хлороформа, до получения бесцветного экстракта. Хлороформ из пробы удаляют экстрагированием Ъ мл четыреххлористого углерода. К водному раствору после экстракции прибавляют 5 капель растаора тимолового- синего и концентрированным раствором аммиака нейтрализуют до появления синего окрашивания. Этим способом, из пробы удаляют вместе с висмутом и оловом также медь, серебро и ртуть. [c.298]

    Например, фотохимическое восстановление желе-за(П1) до железа(П) или урана(У1) до урана(1У) в определенных условиях в присутствии кислорода воздуха может многократно повторяться. Железо(П) и уран(1У) окисляются кислородом воздуха до железа(П1) и ура-на(У1), которые могут снова вступать в реакцию фотовосстановления, окисляя при этом соответствующее количество специально подобранного реагента. Если этот реагент обладает способностью в результате окисления менять окраску (гидразосоединения, лейкосоединения или восстановленные формы некоторых красителей), то появляется возможность определять очень малые количества железа или урана по образованию или ослаблению окраски реакционной смеси в процессе облучения. Если же реагент, применяемый для фотохимического восстановления, способен разлагаться с выделением двуокиси углерода (Н2С2О4) или азота (диазосоединения, гидразин), то это может быть использовано для высокочувствительного полюмометрического определения железа или урана [62]. [c.10]

    Существует несколько методов определения нитратов в природных и очищенных водах 1) с фенолдисульфоновой кислотой при содержании NO3 0,5—50 мг/л 2) колориметрический метод с салицилатом натрия при содержании NO3 0,1—20 мг/л 3) при анализе вод с содержанием NO3 5—-10 мг/л может применяться полярографический метод 4) метод восстановления сплавом Деварда до аммиака с последующей перегонкой используется для анализа сточных вод, содержащих нитраты более 5 мг/л 5) колориметрический метод с восстановлением нитратов до нитритов гидразином применим для концентраций NO3 0,01—2 мг/л. В этом методе, если в растворе присутствуют нитриты, содержание нитратов находят по разности. [c.29]


Смотреть страницы где упоминается термин Гидразины определение восстановлением: [c.74]    [c.442]    [c.282]    [c.314]    [c.224]    [c.87]    [c.128]    [c.189]    [c.180]    [c.196]    [c.301]   
Количественный органический анализ по функциональным группам (1983) -- [ c.506 , c.511 ]




ПОИСК





Смотрите так же термины и статьи:

Золота соединения, восстановление определения гидразина

Молибдена соединения, восстановление гидразином определения гидразина

Определение нитратов после восстановления до нитритов гидразином

Селена соединения, восстановление определения гидразина

Хлора соединения, восстановление определения гидразина

Церия соединения, восстановление при количественном определении гидразина



© 2025 chem21.info Реклама на сайте