Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк,. качественное определение

    Для устранения мешающего влияния других элементов при качественном определении мышьяка используются методы ионообменной [121] и адсорбционной хроматографии [1064], а также метод кольцевой бани [689, 934, 992]. [c.32]

    Г. Качественной определение серы, фосфора и мышьяка [c.520]

    Если исследуемое вещество нелетуче, его можно для качественного определения серы, фосфора и мышьяка предварительно сплавить со смесью углекислого натрия и азотнокислого калия, плав растворить в воде и с полученным раствором провести обычные испытания на указанные элементы. [c.520]


    Влияние фтор-иона на ослабление окрасок синего комплекса молибдена с фосфором, мышьяком и кремнием неодинаково [11]. Минимальное количество фтор-иона, необходимое для обесцвечивания комплекса кремния, равно 1,9 мг, комплекса мышьяка— 3,75 мг и комплекса фосфора — 8,55 мг, т. е. фтор-ион ока- зывает наиболее сильное воздействие на синий кремне-молибденовый комплекс, поэтому последний и рекомендуется в качестве реагента на фтор-ион. Данной реакцией исследовалось влияние фторидов на фосфатазу [12]. Модификация этого метода с применением бензидина использована для быстрого определения фтор-иона в стекле (см. качественное определение). [c.124]

    Сухая реакция для качественного определения парижской зелени. В сухую пробирку насыпают немного порошка парижской зелени и нагревают на огне — порошок разлагается на составные части на стенках пробирки появляются характерные блестящие кристаллики белого мышьяка (мышьяковистого ангидрида), уксусная кислота улетучивается и [c.10]

    Качественное определение мышьяка в плодах, ягодах и овощах. Для анализа берут фрукты и овощи чистые и сухие, разрезают их на несколько частей (8—16) и от каждой части берут по одному кусочку так, чтобы общая навеска была не менее 100 г сухие фрукты размалывают в мясорубке и оттуда берут 40 г средней пробы. Навеску помещают в колбу Кьельдаля емкостью 250 мл, добавляют 15 мл 10-процентной азотной кислоты и 25 мл концентрированной серной кислоты. Переносят колбу на асбестовую сетку и укрепляют на штативе. Выше колбы Кьельдаля, но не непосредственно над ней, на том же штативе укрепляют делительную воронку, наливают в нее концентрированную азотную кислоту, устанавливают носик воронки над центром колбы (рис. 1) и нагревают содержимое колбы до кипения. Во время нагревания, при котором вначале выделяются пары воды, а затем красно-бурые окислы азота, пламя горелки регулируют так, чтобы вся колба представлялась окрашенной в красно-бурый цвет выделяющимися окислами азота. Если по окончании выделения окислов азота жидкость 9. колбе начнет темнеть, в колбу, не прекращая нагревания, добавляют азотную кислоту из делительной воронки по каплям, отрегулировав кран воронки так, чтобы в минуту вытекало 6—8 капель кислоты. Через 15—20 минут добавление азотной кислоты прекращают, и содержимое колбы кипятят до появления [c.44]

    Качественное определение примесей в фосфорной кислоте. Определение мышьяка. К 2 мл кислоты добавляют 10 мл раствора хлористого олова, подкисленного соляной кислотой. После кипячения в течение получаса раствор не должен пожелтеть или приобрести коричневый цвет. [c.302]


    Простое качественное исследование образца (без хотя бы грубого определения количеств входящих в него компонентов) едва ли имеет ценность. Так, например, если образец сульфата аммония-железа (И) содержит ничтожную примесь мышьяка и примененные методы анализа были достаточно чувствительны, чтобы определить ее, сообщение о том, что анализируемый образец содержит Ре, Ы, 5 и Аз, было бы в высшей степени обманчивым. Даже при качественном анализе следует указывать по крайней мере порядок величины для содержания каждого компонента (например, большое содержание, умеренное, малое или следы). [c.207]

    Методы спектрофотометрического анализа основаны на качественном и количественном изучении спектров поглощения различных веществ в инфракрасной области спектра (невидимые электромагнитные колебания с длиной волны от 0,76 до 500 мк), видимой (от 0,76 до 0,4 мк) и ультрафиолетовой (от 0,4 до 0,01 мк). Задача спектрофотометрического анализа — определение концентрации вещества путем измерения оптической плотности на определенном участке видимого или невидимого спектра в растворе исследуемого вещества. Например, при определении хрома исследуют оптическую плотность раствора хромата желтого цвета, поглощающего свет в сине-фиолетовой части видимого спектра. При проведении фотометрического анализа необходимо создать оптимальные физико-химические условия (избыток реактива, светопреломление растворителя, pH раствора, концентрацию, температуру). Фотометрический анализ применяют для определения соединений различных типов окрашенных анионов кислот, перманганата, гидратированных катионов меди (II), никеля (II), роданидных комплексов железа (III), кобальта (II), различных гетерополикислот фосфора, мышьяка, кремния, перекисных соединений титана, ванадия, молибдена, лаков различных металлов с органическими красителями и др. Экстракционные методы разделения химических элементов основаны на различной растворимости анализируемого соединения в воде и каком-либо органическом растворителе. При этом происходит распределение растворенного вещества между двумя растворителями (закон распределения, 25). Для извлечения из водных растворов чаще всего применяют различные эфиры (диэтиловый эфир), спирты (бутиловый, амиловый спирт), хлорпроизводные (хлороформ, четыреххлористый углерод) и др. Иод можно извлечь бензолом, сероуглеродом, хлорное железо — этиловым или изопропиловым эфиром. [c.568]

    Так как составные части разных сортов железа, как правило, бывают заранее известны, то лишь редко.бывает нужно производить качественное исследование, разве лишь для того, чтобы установить присутствие [специально вводимых добавок] или же мышьяка и титана. Способ анализа тогда выбирают или из описанных выше для качественного исследования руд, или применяют такой же, как при количественном определении. [c.82]

    Так, в одном из комплектов для проверки пищевых продуктов имеется простейший экстракционный прибор и набор реагентов для индикации фосфорсодержащих ОВ, иприта, мышьяка, а также для групповой индикации алкалоидов и токсичных солей тяжелых металлов. Комплект для исследования воды должен быть составлен с учетом выполнения этой задачи. Для решения вопроса, будет ли вода какого-нибудь источника пригодна для питья после ее хлорирования, вполне достаточно качественного исследования, чувствительность которого подобрана так, чтобы определить концентрации ОВ выше допустимых. Если ОВ содержится в количествах, превышающих количества, которые могут быть устранены хлорированием, то это указывает на необходимость проведения специальной очистки воды. Для более подробного испытания воды, например для контроля водоочистительных установок, следует пользоваться индикаторным набором, содержащим приборы и реагенты для полуколичественного определения основных ОВ и для определения pH. [c.247]

    Определение меди, олова, ртути и мышьяка имеет место при исследовании питьевой воды, пыли воздуха, красок и т. д. Соли меди иногда содержатся как вредные примеси в питьевой воде. Они попадают в воду в результате ее длительного воздействия на материал водопроводных труб или резервуаров, в которых вода долго хранится. Определяют эти соединения обычными методами качественного анализа. [c.79]

    Установив качественной пробой наличие в серной кислоте мышьяка, приступают к его количественному определению, для чего 25 мл кислоты разбавляют до 200 мл дистиллированной водой, добавляют 5 мл раствора KJ (50 г KJ на 1 л воды) и кипятят жидкость до появления желтого или коричневого окрашивания. Затем добавляют 5 мл раствора сульфита [c.344]

    При положительных результатах качественного обнаружения мышьяка (в зависимости от интенсивности и плотности мышьякового зеркала и скорости его образования) производят количественное определение мышьяка одним из нижеприведенных методов. [c.174]


    Метод разложения образцов нагреванием со смесью карбоната калия и магния [6.147], карбоната натрия и магния [6.148], карбоната лития и цинка [6.148] или карбоната натрия и цинка [6.149] используют при качественном обнаружении галогенов, азота, фосфора, серы, мышьяка и сурьмы, а также кислородсодержащих анионов хлората, перхлората, бромата, нитрата и др. Для количественного определения серы в угле пробу нагревают со смесью пероксида бария и алюминия [6.150], для определения серы в золе, руде и стали применяют смесь Эшка и цинка [6.151 ]. [c.287]

    Современные системы позволяют достичь весьма низких пределов обнаружения, до десятых долей нанограмма. Для определения мышьяка, селена, теллура, висмута и сурьмы, образующих летучие гидриды при восстановлении их атомным водородом, в ряде работ, например [92, 93], с успехом использовали метод беспламенной атомизации. Идея метода далеко не нова. В частности, реакцию образования гидрида мышьяка при выделении атомного водорода, который получали действуя на цинк хлористоводородной кислотой, использовали для качественного обнаружения малых количеств мышьяка еще в прошлом веке (метод Марша). Металлический мышьяк осаждали в виде пленки при пропускании гидрида через нагретую стеклянную трубку (реакция зеркала). [c.215]

    Качественные методы определения содержания солей свинца, никеля и мышьяка в смолах [c.337]

    Березман Р. И. Качественное] определение неорганического мышьяка в воде и пищевых [c.129]

    Качественное определение мышьяка производят по методу Гутт — Цейта на приборе, состоящем из конической колбы емкостью 50 мл со шлифом № 12, в которую вставляют на шлифе стеклянный патрон длиной 120 мм к диаметром 8 мм. В патрон кладут сухой разрыхленный ватный тампончик, а затем ватный тампончик, смоченный 5%-ным раствором ацетата свинца, тщательно отжатый фильтровальной бумагой и разрыхленный, а после этого — сухой разрыхленный ватный тампон, на который насыпают сухие кристаллы нитрата серебра. [c.337]

    С. М. Драчев, А. С. Разумов, С. Б. Бруевич, Б. А. Скопинцев, М. Т. Голубевг[. Ме тоды химического и бактериологического анализа воды. [Медгиз, 1953, (280 стр В книге описаны наиболее достоверные методы качественного исследования и коли чественного определения физических свойств и химического состава органических и неорганических веществ, растворенных в воде. Значительное место уделено по.1евым методам анализа воды. Помимо анализа воды па обычные компоненты, в книге приведено описание методов определения менее распространенных элементов мышьяка, свинца, меди, цинка, фтора, хрома, селена, [c.491]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    Отделение мышьяка в виде арсина с поглощением его фильтровальной бумагой, пропитанной бромидом ртути, используется для высокочувствительного определения мышьяка рентгенофлуоресцентным методом в различных материалах и с высокой точностью [765] (см, раздел Рентгенофлуоресцептный метод ). Ряд методов качественного обнаруя ения также непосредственно связан с выделением мышьяка в виде арсина (см, гл. III). В связи с этим в указанных разделах подробно изложены соответствующие модификации метода отделения мышьяка отгонкой в виде арсина. [c.144]

    Элементный анализ используют для количественного определения органических и элементорганических соединений, содержащих азот, галогены, серу, а также мышьяк, висмут, ртуть, сурьму н другие элементы. Элементный анализ может быть также применен для качественного подтверждения нгшичия этих элементов в составе исследуемого соединения или для установления или подтверждения брутто-формулы вещества. [c.126]

    Руководство к распознаванию ядов, противоядий и важнейшему определению первых как в организме, так и вне оного посредством химических средств, названных реактивами . Книгу А. А. Иовского можно рассматривать как попытку химическими сведениями оказать помощь судебно-медицинским экспертам при обсуждении последними случаев отравления. Это было первое руководство русского автора по судебной химии. В книге приведен список веществ, встречавшихся в то время в качестве ядов кислоты, щелочи, некоторые соли ядовитых кислот, например нитраты, а также соединения ртути, мышьяка, меди, свинца, висмута и сурьмы. Описаны признаки отравления и средства избавления от яда , а также указаны реактивы для открытия ядов. В книге А. А. Иовского не получила отражения специфика химико-токсикологических анализов, в ней нет еще и упоминания об изолировании ядовитых веществ из биологического материала. Весь анализ на наличие ядов по этому руководству сводится к обычному качественному исследованию. [c.12]

    Реакция Зангер—Блека позволяет сочетать качественное обнаружение мышьяка (при его малых количествах) с количественным определением. [c.330]

    Для выращивш1ия качественных кристаллов или направленных поликристаллов термоэлектрических материалов необходимо иметь достаточно чистые исходные компоненты - висмут, сурьму, селен, теллур. Если селен выпускают достаточно чистым, то с теллуром, сурьмой и висмутом возникают определенные сложности, особенно с теллуром. Одни производители предпочитают более грязный, но относительно дешевый теллур, другие - более чистый, который стоит намного дороже. Поэтому некоторые производители самостоятельно производят доочистку исходного теллура. Возгонка является эффективным способом очистки Те от многих примесей. По такому же принципу очищают и сурьму. Возгонка 8Ь, как известно, является малоэффективной при очистке от свинца и мышьяка. И если мышьяк как примесь практически не оказывает влияния на изменение свойств материала, то свинец является донором. Поэтому процесс возгонки 8Ь должен быть организован таким образом, чтобы можно было использовать небольшие различия в физических свойствах 8Ь, Аз и РЬ. Очистка висмута обычно ограничивается стандартной процедурой, хорошо описанной в научно-технической литературе, - фильтрацией расплава В1 для очистки от оксидов, которые всегда присутствуют в металлическом висмуте. [c.77]

    Обнаружение. Качественным методом определения соединений мышьяка является проба Марша. Образец обрабатывают цинком и хлороводородной кислотой (которые сами не должны содержать мышьяка или сурьмы) и образующуюся газовую смесь арсина и избытка водорода пропускают через нагретую кварцевую трубку. Арсин разлагается (2AsH3 = 2As-Ь ЗН2), и мышьяк образует на внутренней поверхности холодной части трубки коричнево-черный блестящий налет — мышьяковое зеркало этот налет разрушается при смачиваний раствором гипохлорита натрия. [c.357]

    Идентификация небольших количеств кристаллических соединений, находяищхся, например, в виде примесей, наиболее успешно может быть осуществлена при помощи микродифрак-ции. Согласно Фуксу [48], этот метод позволяет производить качественный анализ примеси в количестве 10" г при размере объекта 1 а, причем точность определения постоянной решетки в среднем составляет 1 %. Другой способ идентификации микроколичеств веществ, более привычный для химиков, заключается в проведении характерных реакций, например, реакций растворения, непосредственно с объектом, находящимся на пленке-подложке [49]. Путем обработки объекта различными реактивами и электронно-микроскопического контроля за результатами такого воздействия эта задача может быть решена при том условии, что реактивы не будут взаимодействовать с сеткой — объектодержателем (для этих целей обычно следует применять платиновые сетки или диски). Отдельная работа была посвящена идентификации малых количеств мышьяка [50]. [c.221]

    Охфеделение превращением мышьяка в арсенат серебра и титрованием методом Фольгарда. Осаждение мышьяка (V) в виде арсената серебра, растворение последнего в азотной кислоте и титрование серебра в полученном растворе методом Фольгарда является очень хорошим споеобом определения мышьяка, особенно пригодным для применения после отгонки мышьяка е соляной кислотой и отделения его в виде сульфида. Германий и те малые количества сурьмы и олова, которые могут в этом случае сопровождать мышьяк, определению не мешают. Этот метод не может применяться для анализа веществ неизвестного качественного состава, так как имеется болыАе число анионов, также осаждающихся в виде солей серебра, например фосфат-, ванадат-, молибДат- и хро мат-йоны. Следует избегать большого избытка аммонийных и натриевых солей. [c.310]

    Возможность качественного анализа жидкостей показал Ахерн (1961), который использовал очищенную поверхность электродов из кремния высокой чистоты как подложку для нанесения растворов бериллия и мышьяка. Был достигнут предел обнаружения 1 ат. млрд . Позднее Чупахин и сотр. (1969), Чупахин и Крючкова (19696) и Оуэнс (1970) использовали метод замораживания жидкостей для определения содержащихся в них примесей. [c.361]

    Если в настоящее время исследования микроэлементов нефти связаны с целым комплексом вопросов, таких как происхождение микроэлементов, формы существования их з нефтях, связь с другими компонентами 1сфти и т. д., то большая серия первых по хронологии работ была посвящена лип ь определению зольности нефтей и качественному составу золы нефти. С введением в практику изучения минеральной , асти иефти количественных методов анализа резко возросло число исследований пи составу золы нефтей. Накопление достаточного экспериментального материала позволило Хекфорду [282—284] уже в начале 30-х годов нынешнего сто-лрт я выдвинуть предложение систематизировать известные в то время микроэлементы в следующем порядке (ио их ко-личестве)1ному содержанию) сера, кислород, азот, ванадий, фосфор, калий, никель, юд, кремний, кальций, железо, маг-ни)1. натрий, алюминий, марганец, свинец, серебро, медь, титан, олово, мышьяк. [c.109]

    Качественный анализ химически чистой концентрированной серной кислоты на содержание примесей. Определение мышьяк а. Раствор, состоящий из 1 мл серной кислоты, 1 мл воды и 10 -ИЛ хлористого олова, после кипячения в течение получаса не должен окрашиваться в коричневый цвет. Окрашивание раствора в коричневый цвет после кипячения указывает на присутствие в кислоте примесей мышьяка. Раствор хлористого олова приготовляют следующим образом 5 Г 5пС12 2Н20 растворяют в таком количестве концентрированной соляной кислоты, чтобы объем раствора составил 50 мл-раствор оставляют на 1—2 дня в теплом помещении если образуется осадок, то чистый раствор сливают в бутыли с притертой пробкой. [c.297]

    Ю. И. Усатенко и О. В. Дaцeнкo Ю. Ю. Лурье и Н. А. Филиппова применили ионообменные процессы в анализе сплавов. Усатенко и Даценко пользовалась вофатитом Р при определении фосфора в фосфористой меди и в феррофосфоре. Выделенную фосфорную кислоту оттитровывали в первом случае через 30 мин. и во втором случае через 1 час. Лурье и Филиппова путем ионного обмена выделили фосфор, серу и мышьяк из металлических никеля и меди. Из раствора, полученного после растворения никеля или меди, катионит задерживает катионы никеля или меди, а сера, фосфор и мышьяк в виде анионов проходят в фильтрат, где могут быть определены с большой точностью. Емкость катионита в аммиачной среде оказалась значительно больше, чем в кислой среде. Эти исследования показали, что для успешного разделения смесей ионов, получаемых при растворении различных сплавов, необходим подбор условий, зависящий от качественного и количественного состава разделяемой смеси. [c.123]

    В настоящей работы найдены оптимальные условия для избирательного йодо-метрического определения трехвалентного мышьяка, трехвалентной сурьмы и гидразина в присутствии четырехвалентного ванадия и роданида (а сурьмы — также в присутствии гидроксиламина). Кроме того, выявлены оптимальные условия для качественного обнаружения с помощью йода указанных восстановителей (а также ферроцианц-ла), как отдельно взятых, так и в смеси друг с другом. [c.227]

    Методы с применением триоксифлуоронов. Одним из наиболее популярных методов фотометрического определения германия в настоящее время является метод с применением 9-фенил-2,3,7-триокси-6-флуорона или фенилфлуорона. Литература по изучению и применению этого метода к определению германия в разнообразных объектах очень обширна, например [98—139]. Метод основан на качественной реакции германия с фенилфлуороном, предложенной для выполнения на фильтровальной бумаге [140]. При выполнении на бумаге реакция специфична для германия, но при выполнении в растворе аналогично германию реагируют многие элементы IV, V и VI групп периодической системы Т1, Zl Н , 5п (IV), ЗЬ (III), ЫЬ, Та, Мо, . Различие заключается в большем или меньшем влиянии концентрации водородных ионов на реакцию того или иного элемента. Германий и сурьма могут реагировать с фенилфлуоро-И(зм при более высокой кислотности раствора, чем другие элементы. Фосфор, мышьяк и кремний не мешают определению германия фенилфлуороном. [c.407]


Библиография для Мышьяк,. качественное определение: [c.158]   
Смотреть страницы где упоминается термин Мышьяк,. качественное определение: [c.572]    [c.385]    [c.410]    [c.283]   
Синтез органических препаратов из малых количеств веществ (1957) -- [ c.159 ]




ПОИСК





Смотрите так же термины и статьи:

Мышьяк качественное определение при отравлениях

Мышьяк,. качественное определение Нафталинсульфокислота, натриевая



© 2025 chem21.info Реклама на сайте