Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Падай

    Аристотель сделал еще один важный щаг. Каждый элемент он охарактеризовал определенным природным набором свойств. Так, огню присуще подниматься, а земле падать. Но свойства небесных тел отличались от свойств любого вещества земного происхождения. Не падая и не поднимаясь, небесные тела, казалось, постоянно вращались вокруг Земли. [c.16]

    Вода с растворенной в ней двуокисью углерода (ее часто знают как углекислый газ — Прим. ред.) —это и есть обычная газировка. Приготовляя ее, двуокись углерода растворяют в воде под некоторым давлением, чтобы увеличить ее растворимость. А когда бутылку с газированной водой откупоривают и давление в ней падает, лишний газ выходит наружу в виде пузырьков. Своим приятным кисловатым вкусом газированная вода обязана небольшому количеству угольной кислоты, которая образуется при соединении двуокиси углерода с водой. [c.162]


    Переработка отработанного катализатора. Приготовленный описанным выше способом катализатор используют для синтеза. Когда активность катализатора снизится, его подвергают промежуточной регенерации непосредственно в реакторах, о чем будет идти речь ниже. После этого катализатор работает еще в течение некоторого времени и затем его опять регенерируют. После неоднократного повторения этой операции активность катализатора настолько падает, что промежуточная регенерация в реакторах уже не дает достаточного эффекта. Тогда катализатор выгружают из реактора и перерабатывают с разделением на исходные составляющие, которые затем вновь используют для приготовления катализатора. Само собой понятно, что при такой переработке регенерируют лишь кобальт и торий [27]. [c.85]

    Содержание олефинов в лродуктах синтеза, представляющих интерес для дальнейшей химической переработки, очень постоянно и падает от 72% во фракции С5 лишь до 62% во фракции С18, составляя в среднем 70%. [c.128]

    Соотношение жидких, и твердых углеводородов при 200° и 100 аг составляет 1 2, а при 200° и 1000 аг — 1 3. Ниже 100 ат н особенно ниже 50 ат выход быстро падает. По сравнению с синтезом над кобальтовым катализатором температура синтеза над рутениевым катализатором может меняться в довольно широких пределах без нарушений реакции и уменьшения суммарного выхода- продуктов. Примерно одинаковые выходы жидких и твердых продуктов могут быть получены в интервале температур 190—240°. При более высоких температурах и особенно выше 300° образуются метан и углекислота. Увеличение давления в этом случае не изменяет положения [82]. [c.131]

    Нормальная нагрузка катализатора составляет примерно 18 л синтез-газа в час на 1 г рутения. Около 78% окиси углерода исходного газа превращается в жидкие и твердые продукты реакции, составляющие в сумме примерно 136 г/м . С 1 г рутения получают 0,24 г час продуктов синтеза. При более значительных удельных нагрузках и, следовательно, скоростях газового потока глубина превращения падает и образуется меньше продуктов реакции из 1 исходного газа. Общий выход с 1 г рутения возрастает до максимума, достигаемого при подаче 10 л синтез-газа в час на 1 г рутения. [c.132]

    В последние годы советскими исследователями изучалась зависимость между температурой застывания хлорированного парафина и содержанием хлора [264]. Температура застывания падает до содержания хлора около 36%, а затем снова начинает повышаться. [c.252]

    Растворимость нитропарафинов в воде значительно падает с увеличением алкильного остатка (см. табл. 101). [c.316]


    Если определять смачивающую способность таких солей сульфокислот с учетом действия всегда находящейся в соли сульфокислот поваренной соли и наносить значения концентрации в г/л как функцию числа углеродных атомов или как ф/ункцию температурных пределов разгонки исходных углеводородов, то получается кривая, изображен-на5 на рис. 71. Эта кривая показывает, что смачивающая способность сначала возрастает с ростом величины молекулы, затем при определенной величине молекулы достигает своего максимума и после этого снопа падает. [c.410]

    Соли алкилсульфокислот с сульфогруппой, стоящей в конце цепи,, труднорастворимы в воде и негигроскопичны. По мере возрастания молекулярного веса растворимость все более падает. В то время как соли додецил-1-сульфокислоты при комнатной температуре с трудом растворяются в воде, соли гексадецил- или октадецил-1-сульфокислоты практически нерастворимы. [c.414]

    Канальный процесс состоит в том, что природный газ сжигают при недостатке воздуха во многих маленьких горелках и дают коптящему пламени подниматься в вертикальных железных желобах, охлаждаемых снаружи. Эти железные желоба медленно покачиваются, сажа снимается скребками и поступает на переработку. Установка состоит из многих тысяч горелок, изготовленных из плавленого базальта. Температура пламени, равная 1000—1200°, падает у обреза желоба до 500°. [c.509]

    Если в газовую фазу вводить не кислород, а хлор то с повышением его количества концентрация низших нитропарафинов падает, т. е. происходит совершенно противоположное, чем при добавке кислорода. Концентрация 2-нитропропана при этом увеличивается, а концентрация 1-нитропропана остается прежней. Следовательно, добавка хлора повышает селективность замещения атомов водорода. Как уже было раньше установлено на примере хлорирования, изопропильных радикалов образуется больше, чем н-пропильных. [c.572]

    Реакции обрыва цепи автоокисления могут происходить как путем рекомбинации двух радикалов, например R + R так и путем превращения гидроперекиси в неактивные устойчивые конечные продукты-спирты, альдегиды, кетоны и т. д. С накоплением конечных продуктов окисления скорость реакции падает. [c.43]

    Растворимость воздуха в топливах значительно меняется от внешнего давления. По мере понижения внешнего давления растворимость воздуха в топливах падает. Вследствие этого при подъеме летательного аппарата на высоту растворенный в топливе воздух начинает выделяться из него. Выделившийся воздух через суфлирующую систему выходит из баков самолета, унося с собой и пары топлива, вызывая его потери. Выделение из топлива избыточного воздуха при наборе высоты значительно облегчает возникновение кавитации в топливной системе, так как объем выделяемого воздуха достаточно велик и может достичь нескольких сотен литров на каждые 1000 л топлива (если учитывать расширение воздуха вследствие уменьшения давления с набором высоты). [c.54]

    Скорость распространения пламени зависит от давления, при котором происходит процесс горения. При снижении давления ниже атмосферного скорость горения вначале несколько возрастает, а затем падает. Нормальная скорость распространения пламени зависит также от температуры горючей смеси, по которой распространяется пламя. На рис. 51 приведена зависимость нормальной скорости распространения пламени от температуры горючей смеси н-гептана. Как видно, скорость распространения пламени увеличивается с повышением температуры по линейному закону. Этот характер зависимости сохраняется и для других классов углеводородов, при этом изменяется лишь угол наклона прямой относительно оси абсцисс. Большое влияние на нормальную скорость распространения пламени оказывает энергия активации молекул топлива чем меньше энергия активации, тем выше скорость нормального распространения пламени (табл. 15). [c.80]

    Ароматические углеводороды окисляются несколько труднее, чем нафтены, но стойкость их против окисления падает по мере усложнения молекул, в частности с увеличением числа колец. При этом в случае наличия у ароматических колец коротких боковых цепей (или коротких цепей, связывающих между собой ароматические радикалы) окисление сопровождается образованием высокомолекулярных продуктов— смол, асфальтенов и карбенов, часто выпадающих в осадок. Если даже у ароматических колец имеются длинные алкильные цепи, то в результате окисления образуется меньше полимеров, но больше органических кислот и подобных продуктов, не выпадающих в осадок. [c.142]

    В рабочем интервале температур предел прочности большинства смазок составляет от 1 до 30 г см . Для определения предела прочности смазок существует прибор пластомер К-2, созданный К. И. Климовым. Схема пластомера К-2 приведена на рис. ПО. Определение предела прочности смазок по этому методу (ГОСТ 7143—54) основано на фиксировании минимального давления, вызывающего сдвиг смазки в капилляре 2 пластомера К-2. При нагреве резервуара б за счет термического расширения жидкости давления в герметически замкнутой системе прибора повышается. В момент сдвига столбика смазки за счет увеличения объема системы давление падает. Максимальное давление, достигнутое при определении, фиксируемое манометром, соответствует пределу прочности смазки. [c.193]


    ГОСТ 7163—54, автор А. А. Константинов). Схема вискозиметра приведена на рис. 113. Смазка выталкивается штоком 4 из камеры 5 через капилляр 6. Продавливание смазки через капилляр осуществляется при помощи предварительно сжатой пружины 1. При полностью сжатой пружине истечение происходит под большим давлением с высокой скоростью, по мере передвижения штока давление в камере и скорость сдвига смазки в капилляре падают. Таким образом достигается переменная скорость истечения (градиент скорости сдвига). [c.195]

    Плавление консистентных смазок, являющееся следствием разрушения ее структуры, происходит в относительно широком интервале температуры. Оценку температурной стойкости консистентных смазок производят по температуре каплепадения, т. е. температуре, при которой падает первая капля расплавившейся смазки из отверстия капсюля I специального прибора (рис. П6), помещаемого в постепенно нагреваемую стеклянную пробирку — воздушную баню (ГОСТ 6793—53). Ориентировочно считают, что смазки можно применять при температурах на 15—20° ниже их температур каплепадения. [c.197]

    При добавлении в топливо незначительного количества веществ, повышающих электропроводность (соли щелочных металлов и др.), скорость образования статического электричества резко падает, а Б некоторых случаях полностью устраняется. Вместе с тем добавление к топливу углеродистых веществ (асфальта, нефтяного битума) в незначительных количествах (0,005—0,0005%) повышает способность топлива образовывать статическое электричество во время перекачки. [c.231]

    Учет истинного фазового состояния мазута резко меняет нагрузки по пару и жидкости в вакуумной колонне. Так, при =1,78 жидкостная нагрузка тарелок концентрационной части колонны падает по сравнению с расчетной по условию равновесного однократного испарения на 30—70%, а при = 2,4 — на 40—90%. Следовательно, вакуумная колонна, рассчитанная без учета отклонения фазового состояния сырья от равновесного, будет работать неэффективно. [c.76]

    Влияние концентрации. Адсорбция тех или иных молекул или ионов возрастает с увеличением их концентрации в растворе, однако не пропорционально концентрации, а более медленно, как следует из рис. 16. По изотерме адсорбции (см. риС. 16) можно установить, что 1) степень адсорбции падает с увеличением концентрации вещества в растворе 2) с увеличением концентрации вещества в растворе увеличивается абсолютное количество адсорбированного вещества и 3) с увеличением концентрации вещества в растворе количество адсорбированного вещества стремится к некоторому конечному значению. [c.111]

    Содержание сахара в крови почти не меняется оно лишь немного увеличивается после еды и немного падает, когда мы голодны. Возможно, именно этими небольшими колебаниями содержания глюкозы объясняется ошушение голода или сытости. [c.137]

    Анализ газов пиролиза пропана и н-бутаиа в целях установления влияния температуры прн постоянном времени нагрева на протекание реакций крекинга й дегидрирования выполнен П. К. Фролихом с сотрудниками [20]. На рис. 21 показан состав продуктов нпролиза пропана, а именно про-пена, водорода и этилена (метан не обнаружен), в зависимости от температуры. Можно видеть, что при 880° в газе содержится наибольшее количество олефипов. Максимальное содержание пропепа в газе наблюдается нри температуре реакции 810°. До этой температуры содержание водорода в газе эквивалентно содернчанию нропена. Отсюда следует, что здесь происходит чистая реакция дегидрирования. Выше 810° содержание пропепа падает, в то время как содержание водорода сильно возрастает, показывая этим, что пропеп претерпевает вторичную реакцию, сопровождающуюся освобождением водорода. Максимальная концентрация этилена достигается при 890°, когда содержание его составляет около 30%. [c.51]

    Условия процесса в стадии предварительного гидрирования практически такие же, как и, в стадии бензинирования или расщепления температура около 360°, давление 250 аг. На 67 т час вводимого в процесс продукта падает 28 000 нм 1час свежего водорода. Удельная цро-изводите.ль ность катализатора (объемная скорость) около 0,8, или другими словами, подача среднего масла А составляет 0,8 л яй л катализатора в час. Наиболее широко используемый катализатор предварительного гидрирования имеет состав (в %). [c.40]

    Для синтолового синтеза Фишер и Тропш сначала пропускали смесь окиси углерода и водорода при 400° и 100 аг над железными стружками в присутствии щелочей без циркуляции . В последующем они перешли к циркуляционной схеме с возвратом газа в реактор после конденсации продуктов реакции. Поскольку исследователи проводили эксперименты в закрытой аппаратуре без ввода дополнительных количеств свежего газа, то давление в системе падало в соответствии с объемом вступивших в реакцию газовых компонентов. В ходе экспериментов были установлены два важных факт а-. 1) реак- [c.73]

    При чисто термическом хлорировании, как и при каталитическом хлорировании в присутствии стационарных катализаторов, возникают серьезные трудности. В результате выделения элементарного углерода и смолистых продуктов в трубопроводах и других частях аппаратуры образуются отложения, которые постепенно приводят к полному забиванию системы. Одновременно падает активность катализатора вследствие образования на нем графитоподобных отлржений. [c.170]

    При 375° полихлорпентан уже отсутствует, а содержание октахлор-циклопентена составляет лишь около 25%. При 400° выход четыреххлористого углерода и гексахлорэтаиа достигает 89% от теоретического, наряду с этим образуется 10% октахлорциклопентена. При 450— 500° количество октахлорциклопентена в продуктах реакции снова увеличивается это, вероятно, объясняется тем, что при высоких температурах концентрация хлора в жидкой фазе падает. [c.190]

    Добавка тетраэтилсвинца к бензинам для повышения октанового числа наиболее полно используется в тех случаях, когда бензин практически ие содержит серы. В присутствии же сернистых соединений ан-тидетонационное действие тетраэтилсвинца частично падает снижение его активности прямо пропорционально содержанию серы з бензине. [c.214]

    В соответствии с часто высказывавшимся взглядом, что хорошими смазочными свойствами обладают только углеводороды, в молекуле которых имеются циклы, исследовались возможности получения смазочных масел конденсацией высших хлористых алкилов с ароматическими углеводородами. Исходным сырьем для этого применяли газойль с (пределами кипения приблизительно 230—320" , получаемый при синтезе углеводородов по Фишеру — Тропшу, известный под названием когазин П. Этот исходный материал хлорировали и затем подвергали его взаимодействию с ароматическими углеводородами по Фриделю — Крафтсу в присутствии безводного хлористого алюминия. Таким спосо-болМ удавалось получать смазочные масла любой требуемой вязкости, отличавшиеся хорошими низкотемпературными свойствами, стойкостью к окислению и низкой коксуемостью. Однако важнейшая характеристика смазочных масел — их вязкостно-температурная зависимость, выражаемая высотой полюса вязкости или индексом вязкости, для таких масел оказывалась неудовлетворительной. Вязкость этих масел сравнительно круто падает с повышением температуры. Высота полюса вязкости таких масел лежит около 3 индекс вязкости соответственно равен около 30. [c.235]

    Способность к реакции падает с повышением молекулярного веса нитросоединения и альдегида. К реакции конденсации с нитропара-финамп способны также и кетоны в присутствии основных катализаторов [29]. С нитрометаном такая реакция протекает следующим образом  [c.273]

    Остаток азотной кислоты не теряется, а представляет в значительной части окись азота, из которой азотная кислота снова может быть регенерирована. Если нанести на график выходы по температуре при постоянном времени контактации, то получается кривая, которая сначала поднимается, достигая, своего максимума, и онова падает [77]. [c.281]

    Лишь значительно позже этому открытию было уделено необходимое внимание в 1949 г. Хэсс и Александер [113] и в 1952 г. Бахман, Хэсс и Аддисон опубликовали подробные сведения о влиянии добавки кислорода на нитрование пропана и н-бутана азотной кислотой и двуокисью азота. При нитровании азотной кислотой с добавкой кислорода реакция превращения значительно ускоряется, но конеч-ный выход нитропарафинов сильно падает. Если же увеличить соотношение поверхности к объему реактора -или ввести водяной пар, то выход будет удовлетворительным по отнои1 нию к прореагировавшему углеводороду. При нитровании двуокисью азота добавка кислорода ускоряет. превращение и увеличивает выход. При этом время пребывания при нитровании можно значительно сократить. Добавка кислорода при нитровании с двуокисью азота благоприятно влияет на нитрование, чем при при- ленении азотной кислоты. [c.298]

    Фактически почти всегда можно установить, что по мере развития реакции сульфохлорирования все легче наступает обрыв цепи, а это значит, что квантовый выход становится все меньше, или, другими словами, что количество световой энергии, потребное для поддержания реакции, постепенно возрастает. Скорость реакции хлорирования парафина заметно уменьшается, если у каждого атома углерода замещается только 1 атомом водорода. Скорость реакции при сульфохлорировании (по Крепелину с сотрудниками) падает, когда каждый второй или третий атом углерода уже замещен [7]. [c.367]

    По светопроницаемости и по температурной стойкости больше всего подходят светильники из кварцевых труб. Если пользоваться трубами из увиолевого стекла, выходы продукта снижаются при прочих равных условиях до 85%. Трубки из иенского стекла поглощают акти-ничное излучение уже в такой степени, что выходы падают в 2 раза по с равне н ию с та ковым и пр и использовании ква рцевого сте1КЛ1а. [c.492]

    Как видно из приведенных даннр 1х, добавка в реакционную зону кислорода повышает долю низших питропарафинов при этом содержание вторичного нитробутана падает сильнее, чем первичного. В случае пропана добавление кислорода при прочих равных условиях увеличи-вгет образование нитрометана 2-нитропропана получается при этом меньше, в то время как концентрации 1-нитропропана и нитроэтана несколько повышаются. [c.572]

    Анализ процесса ректификации нефтяных смесей показывает, что основными компонентами, загрязняющими дистиллят Дхш и остаток Дхи (рис. 1-42), являются компоненты, прилегающие к температурной границе деления смеси [69] доля остальных загрязняющих компонентов Ахв2 и падает по мере удаления температуры кипения их от тем1пературной границы деления. [c.82]

    В работе [35] на примере разработки оптимальной схемы деметанизацни газов пиро пиза описано применение этого метода. В табл. П.З приведены исходные данные по процессу состав сырья, получаемых продуктов, температуры и давления. На рис. П-25 показаны принципиальные технологические схемы процесса, иллюстрирующие последовательность синтеза в качестве первоначального варианта (схема а) была принята обычная схема полной колонны с парциальным конденсатором при температуре хладоагента (этилена) минус 100 °С. Далее для конденсации и охлаждения верхнего продукта наряду с хладоагентом был использован дроссельэффект сухого газа (схема б). Затем исходное сырье охлаждали до температуры минус 62 С (схема в) н подвергали последовательной сепарации с подачей в колонну нескольких сырьевых потоков (схемы гид). Затем организовали промежуточное циркуляционное орошение в верхней частн колонны (схема е) и, наконец, — рецикл пропана с подачей его в промежуточный сырьевой конденсатор (схема ж). Соответствующие изменения температурного режима и стоимостные показатели процесса приведены в табл. П.4. Как видно, наибольшие затраты в простейшей схеме падают на потери этилена с сухим газом и на хладоагент, а по мере усовершенствования схемы эти статьи затрат существенно уменьшаются и становятся соизмеримыми с остальными элементами затрат для оптимальной схемы ж. [c.129]

    Осаждение проводят в стаканах. Как правило, осаждать вещества нужно из горячих разбавленных растворов. Поэтому перед осаждением исследуемые растворы разбавляют и нагревают (нагревать до кипения не следует, так как может произойти потеря вещества вследствие разбрызгивания). Осаждающий реагент добавляют в раствор медленно при непрерывном перемешивании раствора. Обычно реагент добавляют из бюретки пли пипетки, примем нужно стремиться к тому, чтобы раствор реагента стекал по гнутренней стенке стакана, а не падал каплями в середину ста-ьана, так как это может привести к разбрызгиванию раствора. 1 аствор перемешивают стеклянной палочкой, следя за тем, чтобы г алочка не касалась дна и стенок стакана. После добавления рассчитанного количества осадителя всегда нужно проверить полноту ( саждеиия. Для этого дают осадку собраться на дне стакана, и когда жидкость над осадком посветлеет, добавляют несколько капель раствора осадителя. Если в месте падения капель раствора осадителя не появляется муть, то полнота осаждения достигнута. Если осадок кристаллический, то его оставляют на несколько часов под раствором, если аморфный — его сейчас же отфильтровывают. [c.140]


Смотреть страницы где упоминается термин Падай: [c.31]    [c.76]    [c.15]    [c.232]    [c.290]    [c.554]    [c.570]    [c.23]    [c.68]    [c.70]    [c.179]    [c.200]   
Пестициды химия, технология и применение (1987) -- [ c.291 ]




ПОИСК





Смотрите так же термины и статьи:

Активность катализатора падающая

Бриджмена измерения толщины падающей пленк

Броуновское движение с падающим шариком

Вискозиметр с падающим шариком

Внешний теплообмен в плотном (фильтрующем), падающем и кипящем слое материала

Возбуждение акустической волной, падающей на пограничный слой около шероховатой поверхности. Теория и эксперимент

Возбуждение акустической волной, падающей на пограничный слой плоской пластины

Возбуждение волнами завихренности и давления, падающими на пограничный слой плоской пластины

Возбуждение неустойчивостей волной завихренности, падающей на нестационарный пограничный слой около бесконечной пластины, внезапно приведенной в движение

Возбуждение плоской вихревой волной, падающей на пограничный слои у параболического цилиндра

Волны падающие

Выпарной аппарат горизонтальный, с падающей

Выпарной аппарат со свободно падающей пленко

Вязкость падающего шарика

Газовзвесь с фракциями падающих и отраженных от твердой поверхности частиц

Гиршу период падающей скорости

Гиршу прямолинейно падающая

Гиршу скорость падающая

Гитторфа падающего шарика определение вязкости

Десорберы с падающей пленкой

Диффузия в падающей пленке

Доманский, В. Н. Соколов. Минимально допустимая плотность орошения в аппаратах с падающей пленкой

Доплеровское уширение в случаях высокой плотности падающего излучения

Допустимая непараллельность пучков, падающих на призму и решетку

Ефимов. Коэффициенты массопередачи при адсорбции стационарным и падающим слоем адсорбента

Зайнуллин В.Ф. Комплекс мероприятий по обеспечению стабильной работы адсорбционных установок подготовки газа в период падающей добычи

Захват частиц аэрозолей падающими каплями. Л. И. Гедеонов

Излучение Падающее излучение

Измерение тока падающего пучка

Инерционное осаждение на падающих каплях

Интенсивность падающего света постоянная

Капель, падающих, колебания

Колонки с падающей пленкой

Копер С падающим грузом

Коэффициент аспирации падающих частиц

Кристаллизация расплава в падающей капле

Метод анализа измерений падающего шарика

Метод падающего груза

Метод падающего шарика. Метод продольно смещающегося цилиндра. Метод сдувания тонкого слоя. Другие методы вискозиметрии

Метод падающей капли

Метод падающей пленки

Мешалка падающая

Микроскопия е применением падающего свет

Микроскопия е применением падающего света

Молоты ковочные Основные данные для выбора массы падающих частей

Монтаж металлической дымовой трубы падающей мачтой

Монтаж трубы падающим шевром

Нелинейный массоперенос в падающих пленках

Носители из падающей пленки

Определение размеров частиц латексов по зависимости оптической плотности от длины волны падающего света

Опыт 2. Определение вязкости жидкости в вискозиметре с падающим шариком

Опыты со свободно падающими каплями

Особенности работы кустов эксплуатационных газовых скважин Медвежьего месторождения в период падающей добычи

ПАДАВ пиридилазо диаминобензол

Падающая капля

Падающая насадка

Падающего шара метод

Падающее излучение

Падающий температурный режим

Паде-аппроксимация

Перегонные приборы с падающей пленкой

Период падающей скорости

Период падающей скорости испарения

Период падающей скорости сушки

Периоды постоянной и падающей скорости

Пленка падающая

Постановка задачи с учетом отраженных от пластины дисперсных частиц, взаимодействующих с несущим газом и падающими па пластину частицами

Прибор Варда с падающей пленкой

Прибор с падающим грузом для испытаний образцов на удар

Приложение Б. Связь между падающим и отраженным светом

Применение малогабаритных холодильных машин на газоконденсатных месторождениях в период падающей добычи

Принцип падающей пленки

Принцип падающей рамки

Распределение в падающей пленке

Распределение между реакторами с быстро падающей активностью катализатора

Распределитель жидкости в приборе с падающей пленкой

Регуляторы температуры автоматически с падающей дужкой

Самовоспламенение падающих капель горючих в парах азотной кислоты при высоких температурах

Стрела падающая

Сушка со скоростью падающей

Сушка уравнение для падающей скорост

Тейлор Простая циклическая молекулярная колонна с падающей пленкой

Теплоотдача к падающей пленке

Течение падающей пленки

Толщина падающей пленки

Ударная прочность по методу падающего груза

Ударная прочность по методу падающего груза высокоскоростное растяжение

Условия существования и устойчивости электрического разряда с падающей характеристикой

Фотоэффект флуктуации числа падающих фотонов

Частота колебательная падающего света

Шарика падающего метод

Шарика падающего метод Шейка образца

ЭКСПЛУАТАЦИЯ УСТАНОВОК ОСУШКИ В ПЕРИОД ПАДАЮЩЕЙ ДОБЫЧИ ГАЗА

Эксплуатация технологических установок в период падающей добычи

Энергия падающих молекул

падающих капель расплава, обогащенного глиноземом, на обычное стекло



© 2025 chem21.info Реклама на сайте