Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

гетерофазная

    Допустим, что в мембране одновременно происходят два необратимых и взаимосвязанных процесса, движущие силы которых и Х2. Величина Х1 соответствует движущей силе векторного процесса транспорта -го компонента газовой смеси, в качестве которой принимают отрицательную разность химических потенциалов на границе мембран ( 1 = —Ац,). Сопряженный процесс с движущей силой Ха может быть векторным, как например, перенос у-го компонента, или скалярным, как процессы сорбции и химические превращения. Феноменологическое описание этих процессов идентично, сорбцию можно рассматри-вать как отток массы диффундирующего компонента из аморфной фазы в кристаллическую, где миграция вещества незначительна. В качестве движущей силы скалярного процесса примем химическое сродство Х2=Аг. Заметим, что, согласно принципу Кюри — Пригожина, сопряжение скалярных и векторных процессов при линейных режимах возможно в анизотропных средах (например, в мембранах гетерофазной структуры) или даже в локально-изотропных, но имеющих неоднородное распределение реакционных параметров [1, 5]. [c.17]


    Григорян В. А. Журн. ВХО им. Д. И. Менделеева, 16. 535 (1971). Кинетика гетерофазных процессов в присутствии поверхностно-активных веществ (применительно к абсорбции и десорбции газов в металлургических процессах). [c.269]

    Таким образом, можно заключить, что термодеструктивные процессы переработки ТНО, особенно коксования, представляют собой исключительно сложные многофакторные нестационарные гетерогенные и гетерофазные диффузионные процессы со специфическим гидродинамическим, массообменным и тепловым режи — мом. [c.41]

    Метод описания ФХС, который будет изложен в настоящей главе, является в некотором смысле противоположным тому формальному подходу, который обсуждался выше. Здесь исходным моментом решения задачи служит внутренняя структура системы. Поведение ФХС представляется как следствие ее внутренних физико-химических процессов и явлений, для описания которых привлекаются фундаментальные законы термодинамики и механики сплошной среды. В главе будут рассмотрены характерные схемы реализации этого подхода на примерах сложных физикохимических систем, построение адекватных математических описаний которых обычно вызывает затруднения. В частности, будут сформулированы принципы построения математической модели химических, тепловых и диффузионных процессов, протекающих в полидисперсных ФХС (на примере гетерофазной полимеризации) будет изложен метод построения кинетической модели псев-доожиженного (кипящего) слоя будет рассмотрен один из подходов к расчету поля скоростей движения смеси газа с твердыми частицами в аппарате фонтанирующего слоя сложной конфигурации на основе модели взаимопроникающих континуумов будет исследован процесс смешения высокодисперсных материалов с вязкими жидкостями в центробежных (ротационных) смесителях. [c.134]

Рис. 1.17. Схема механизма гетерофазного синтеза в жидкой фазе в акустическом поле Рис. 1.17. <a href="/info/65242">Схема механизма</a> <a href="/info/825981">гетерофазного синтеза</a> в <a href="/info/30223">жидкой фазе</a> в акустическом поле
    В качестве высокотемпературных ингибиторов окисления, способных стабилизировать гомо- и гетерофазные процессы, могут быть применены производные металлов переменной валентности. Металлсодержащие ингибиторы окисления, предложенные для стабилизации горюче-смазочных материалов, можно подразделить на четыре типа [310]. [c.94]


    Использование гетерофазных теплоносителей [c.345]

    Очевидным условием существования жидких прослоек является хорощее смачивание твердой поверхности. Приведенное выражение (5.8) хорощо описывает процессы пластической деформации во многих гетерофазных системах различной химической природы [262—264]. Экспериментальный материал, полученный для увлажненных поликристаллов или порошков хлоридов натрия и калия [262], позволяет с уверенностью считать именно влагоперенос основным механизмом соляной тектоники. Это объясняет повышенную пластичность каменной соли и ее склонность образовывать в земной коре купола, шляпы, грибы и другие диапировые структуры. [c.91]

    Границы зерен в горных породах определенным образом распределены по энергии. Параметры этого распределения могут быть найдены, например, по распределению углов в тройных межзеренных стыках. Зная приближенное значение межфазной энергии твердое тело — жидкость, можно оценить важную величину — долю границ, для которых выполняется условие Гиббса — Смита. Если известно напряженное состояние поликристалла, то в уравнение (5.11) можно внести дополнительные поправки с учетом распределения напряжений по отдельным границам. Такая задача была решена Д. А. Крыловым. Это позволяет перейти к решению вопроса о степени связности жидкой фазы, находящейся на границах. Эффективным аппаратом для этого служит теория протекания, которая не только дает пороговые значения концентрации проводящих элементов, но и позволяет оценить транспортные свойства гетерофазного материала на основе представлений о топологии бесконечного кластера. [c.100]

    Указанное представление процесса сильно идеализировано и ограничено областью малых растворимостей, отсутствием в матрице структурных деформаций при растворении.газа и химических реакций. Если непористые мембраны гетерофазны, а скорость сорбции растворенных газов на поверхности дисперсной фазы конечна, то процессы сорбции и диффузии в мембране протекают в одном масштабе времени, и в системе возможно возникновение локально-неравновесных состояний. [c.16]

    Математическая модель процесса гетерофазной эмульсионной полимеризации [33]. Как было показано выше, математическая модель процесса эмульсионной полимеризации должна учитывать диффузионный транспорт молекул мономера в сплошной и дисперсной фазах. Рассмотрим типичную полимеризационную систему, состоящую из воды, практически нерастворимого в воде мономера, эмульгатора и водорастворимого инициатора. [c.153]

    Основные виды переноса, учитываемые при расчете проницаемости пористых мембран (концентрационная и кнудсенов-ская диффузии в газовой фазе, поверхностное течение в адсорбированной пленке и фильтрационный перенос в газовой фазе) обычно считают в первом приближении независимыми и вычисляют по среднему значению градиента давления и при среднем значении давления и состава газовой смеси. Это вносит ошибку, однако интегрирование дифференциального уравнения конвективной диффузии в гетерофазной системе, при учете всех механизмов переноса практически невозможно. Таким образом, проницаемость пористой мембраны вычисляется по уравнению  [c.64]

    В непористых мембранах из-за отсутствия пор в плотном слое резко сокращается количество вещества, адсорбированного поверхностью, решающую роль играет растворимость газов в матрице мембраны. Процесс идет по механизму абсорбции, который условно включает стадии поверхностной сорбции и последующего растворения газа при этом возможна диссоциация молекулы газа или образование нового химического соединения. Таким образом, проникающее вещество и матрица мембраны образуют растворы, которые могут быть однофазными (в высокоэластичных полимерах) или гетерофазными (в полимерах композиционно-неоднородной структуры). Во втором случае необходимо различать дисперсную фазу и дисперсионную среду. В полимерах роль дисперсной фазы играют структурные образования, характеризующиеся периодичностью расположения макромолекул и большой плотностью упаковки. Обычно принимают, что проникающее вещество растворяется и мигрирует только в дисперсионной среде, обычно аморфной фазе, обладающей значительной долей свободного объема и большей подвижностью элементов полимерной матрицы. Мембраны, изготовленные из композиционных материалов с наполнителями или армирующими элементами, представляют собой многофазные системы. [c.71]

    В термодинамических представлениях процесс упорядочивания сопровождается уменьшением свободной энергии раствора (кривая сорбции вогнута относительно оси концентраций). Промежуточная область, соответствующая скачкообразному изменению концентрации, является гетерофазной, т. е. представляет собой смесь зон упорядоченной и неупорядоченной фаз, которая также характеризуется определенными морфологическими особенностями [21, 22]. Термодинамика фазовых переходов трактует этот диапазон состояний как область потери устойчивости однородного раствора, включающая метастабильные и абсолютно неустойчивые состояния. [c.115]


    Таким образом, при температурах ниже критической для данного раствора кристаллическая мембрана может быть однородным раствором в неупорядоченном и упорядоченном состоянии или гетерофазной системой с довольно сложной субструктурой из упорядоченных и неупорядоченных зон. [c.115]

    На втором уровне иерархии информация предыдущего уровня обогащается и преломляется с учетом данных о степени сегрегации системы и структуры надмолекулярных образований. Рабочий аппарат этого уровня составляют математические модели сегрегации потоков [15—19], а также различные теории гетерофазных химических процессов [12, 13]. [c.33]

    Скорость диффузии различна в упорядоченной и неупорядоченной фазах раствора экспериментальные данные свидетельствуют о заметном росте значений Dim в области высоких концентраций водорода [8]. Ранее отмечалось, что образование упорядоченной фазы раствора внедрения сопровождается сильным деформационным взаимодействием в матрице, приводящим к заметному увеличению параметров кристаллической решетки, что эквивалентно росту доли свободного объема при пластификации аморфной матрицы полимерной мембраны. Эти явления также приводят к увеличению скорости диффузии и растворимости. При температурах, меньших критических, процесс диффузии по существу происходит в гетерофазной системе, состоящей из зон упорядоченной и неупорядоченной фаз с различными диффузионными характеристиками. В этой области эффективный коэффициент диффузии будет зависеть от субструктуры кристаллической матрицы мембраны, по аналогии с гетерофазными полимерными матрицами [см. уравнения (3.44) и (3.45)]. [c.117]

    В то же время из-за низкой концентрации частиц в печах объемного сжигания (аналогично гетерофазным процессам с отдельными взвешенными твердыми частицами) вероятность столкновения нагретых выше температуры плавления частиц и образования комков относительно мала. [c.43]

    Разработан метод гетерофазного синтеза нитридов, заключающийся в следующем [3]. Анодное пятно дуги, горящей в азоте, замыкается непосредственно на таблетку металла, помещенную в охлаждаемый тигель. Металл плавится, атомы и молекулы азота диффундируют в расплав и реагируют с ним, образуя нитрид. Кроме того, металл частично испаряется, и нитрид частично образуется в газовой фазе. Образуемый на поверхности металла порошок нитрида далее возгоняется и собирается на водоохлаждаемой спирали. Выход продуктов зависит от силы тока и расхода азота. [c.188]

    Разделение гетерофазных продуктов экстрактивной и азеотропной ректификации обычно проводится в гравитационных декантаторах. Этот способ деления отличается экономичностью, простотой обслуживания и находит широкое применение в органической химии. [c.293]

    Алгоритм расчета периодического расслаивания гетерофазных систем [46]. Исходя из физического представления процесса расслаивания жидких неоднородных смесей была предложена зонная модель расслаивания с различным характером движения капель дисперсной фазы (рис. 7.7). Выделяются следующие зоны зона чистой сплошной фазы, зона стесненного осаждения капель, зона плотной упаковки капель и зона чистой дисперсной фазы. [c.295]

    Такой подход особенно эффективен при моделировании физикохимических процессов в полидисперсных средах с массовым взаимодействием составляющих в области малых параметров (реакторные гетерофазные процессы, кристаллизация, экстракция, абсорбция, ректификация, многие биохимические процессы и т. п.). Заметим, что при моделировании процессов в области больших параметров (давлений, скоростей, температур) могут быть использованы методы статистических теорий механики суспензий [14—16]. [c.15]

    Сегрегация и ее воздействие на химические превращения и процессы переноса особенно проявляются в системах с повышенной вязкостью, а также там, где реакции протекают с высокими скоростями. Образование молекулярных агрегатов характерно для многих процессов получения высокомолекулярных соединений. Так, сложной совокупностью физико-химических явлений отличается гетерофазная полимеризация, при которой образующийся полимер выделяется из первоначально гомогенной системы в виде новой конденсированной фазы с соответствующими морфологическими особенностями и возможным протеканием элементарных реакций в нескольких фазах [12, 13]. Примером может служить полимеризация винилхлорида, которая протекает в три стадии вначале процесс идет в гомогенной мономерной фазе на второй (наиболее продолжительной) стадии полимеризация протекает в двух фазах — мономерной и полимер-мономерной, а на третьей стадии — вновь в одной фазе (полимер-мономерной). При этом процесс сопровождается потоками массы и тепла в глобулярных образованиях (полимерных частицах), размеры которых увеличиваются в ходе реакции за счет поступления реагентов из сплошной мономерной фазы. [c.26]

    Таким образом, в каждой точке объема, занятого гетерофазной многокомпонентной смесью, можно ввести средние плотности Pj, Ря,1 характеризующие массу фазы я единице объема [c.35]

    Особенностью механики гетерофазных сред является то, что составляющие в смеси присутствуют в виде макроскопических (по отношению к молекулярным размерам) включений и среды, окружающей эти включения, так что многие механические и термодинамические свойства -й фазы ( = 1,2,. . ., т) не зависят непосредственно от присутствия других фаз. Однако деформация каждой фазы, обусловливающая ее состояние и реакцию, определяется не только смещением внешних границ выделенного объема гетерогенной смеси (полем скоростей V,.), но и смещением межфазных поверхностей внутри выделенного объема. [c.36]

    Матрица мембраны, изготовленная из сплава, обычно представляет гетерофазнуго систему с довольно сложной субструктурой, зависящей также и от технологии получения. Сорбционные и диффузионные характеристики каждой из фаз различны, средние значения растворимости и коэффициента диффузии, определяющие проницаемость мембраны, зависят от формы и размеров кристаллических образований, их взаимного расположения, концентрации растворенного вещества и других характеристик морфологии гетерофазных твердых растворов. [c.118]

    Процесс эмульсионной полимеризации является характерным примером гетерофазного процесса, который в силу малых размеров частиц дисперсной фазы может рассматриваться как процесс физико-химического взаимодействия между отдельными взаимопроникающими континуумами сплошных сред (каплями мономера, частицами полимера, водной фазой). Уравнения сохранения массы такого многофазного многоскоростного континуума можно записать в виде [32—34] [c.147]

    Математическая модель гетерофазной эмульсионной полимеризации включает уравнения кинетической модели процесса [15, 16] и уравнения нестационарной молекулярной диффузии в водной фазе и полимер-мономерной частице. [c.153]

    Для изучения влияния отдельных факторов на процесс гетерофазной эмульсионной полимеризации, сопровождающийся диффузионными потоками мономера в каждой из фаз, система решалась при различных значениях безразмерных параметров модели. Некоторые результаты расчета представлены на рис. 3.4—3.6. [c.156]

    На рис. 1.3 представлена кодовая диаграмма ФХС (физикохимические процессы в гетерофазном реакторе с перемешиванием), построенная на основе качественного анализа структуры гетеро-фазной ФХС. Блоками кодовой диаграммы служат отдельные процессы, протекающие в системе (см. также рис. 1.1—1.3 в первой книге авторов Системный анализ процессов химической технологии. Основы стратегии ). [c.21]

    На рис. 1.4, а — г изображены модельные кодовые диаграммы некоторых типовых структур потоков в технологических аппаратах. Модельная кодовая диаграмма гетерофазной ФХС должна включать элементы, отражающие условия равновесия и механизм обмена субстанциями между фазами системы. Эту роль выполняет [c.23]

    Щ Рассмотренные выше связные диаграммы процессов в однофазных системах допускают естественное обобщение на гетерофазные системы. Физика гетерофазных процессов такова, что кодовые диаграммы этих процессов состоят из трех взаимосвязанных частей [c.143]

    Следовательно, процедура построения диаграмм связи процессов в гетерофазных системах включает также три этапа  [c.143]

    Область П на рис. 1.1 представляет комбинацию матрицы исходного материала мембраны и компонентов разделяемой газовой смеси матрица может оказаться однородной или гете-рофазной. Пористая подложка (если таковая имеется в мембранном элементе) всегда гетерофазна. Состояние проникающих компонентов в мембране и подложке в общем случае ха- [c.11]

    Рассмотренные эффекты первого, второго, третьего и четвертого уровней иерархической структуры ФХС находятся в тесной взаимосвязи друг с другом и образуют совокупность так называемых микрогид род инамических факторов, влияющих на процессы переноса субстанций в гетерофазной многокомпонентной системе. [c.43]

    И. Н. Дорохов, В. В. Кафаров, Л. Л. Горбацевич. Систеивый анализ гетерофазных реакторов с перемешиванием. Труды Второй Всесоюзной конференции по теории и практике неремепшвания в жидких средах. Черкассы, НИИТЭХИМ, 1973, с. 237—247. [c.78]

    Специфика объектов химической технологии как ФХС накладывает свой отпечаток на рабочий аппарат диаграмм связи. Для описания характера совмещения и взаимодействия потоков субстанций в локальном объеме ФХС наряду с ранее определенными узловыми структурами О и 1 вводятся новые структуры слияния 01 и 02, играющие важную роль при топологическом описании сложных объектов химической технологии. Определяются кодовые диаграммы основных типов структур потоков и физико-хими-ческих явлений в гетерофазных ФХС. Класс энергетических элементов и диаграмм связи расширен за счет введения псевдоэнергетических элементов и топологических структур связп, что позволило существенно расширить сферу применения топологического метода описания ФХС. Так, введение новых инфинитезимальных операторных элементов позволяет наглядно и компактно представить весь сложный комплекс физико-химических явлений, происходящих при бесконечно малых преобразованиях точек сплошной среды. Последнее открывает широкие перспективы для топологического описания систем с распределенными параметрами. Наконец, для учета информации о начальных и граничных условиях и ее использования при топологическом описании ФХС предложен конструктивный метод представления геометрической информации в диаграммной форме и преобразования ее к аналитическому виду с помощью специальных логико-алгебраических операций (ЛАО). [c.102]

    Топологйческйе структуры межфазных явлений, происходящих в гетерофазных физико-химических системах [c.143]


Библиография для гетерофазная: [c.432]    [c.432]   
Смотреть страницы где упоминается термин гетерофазная: [c.16]    [c.13]    [c.185]    [c.29]    [c.87]    [c.72]    [c.119]    [c.24]   
Высокомолекулярные соединения (1981) -- [ c.103 , c.252 , c.256 , c.553 ]




ПОИСК







© 2025 chem21.info Реклама на сайте