Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Енолы, влияние растворителя

    Из рисунка видно также различное влияние растворителя на еноль-ную и кетонную формы кетоенолов. Так как анионы енольных и кетонных форм идентичны, дифференцирующее действие растворителей на их силу обязано различию в энергии взаимодействия их молекул с различными растворителями. Это различие составляет 0,8—1,0 единиц р/ , т. е. сила кислот изменяется в 5—10 раз. [c.340]


    Из рисунка видно также различное влияние растворителя на еноль-ную и кетонную формы кетоенолов. Так как анионы енольных и кетонных форм идентичны, дифференцирующее действие растворителей на их силу обязано различию в энергии взаимодействия их молекул с различными [c.386]

    Для получения енолятов активных метиленовых соединений обычно применяют такие реагенты, как алкоголяты металлов и обладающие более основными свойствами амиды металлов, трифенилметилнатрий и гидрид натрия, а также металлический натрий и металлический калий. Относительную основность удобнее всего сравнивать для различных систем основание — растворитель, так как растворитель оказывает влияние па основность. Однако в настоящей главе заключения об относительной основности базируются в большинстве случаев на успехе или неуспехе в использовании различных оснований в определенных реакциях алкилирования, так как данные об относительной основности отсутствуют. Из рассмотрения равновесия енолят —основание — растворитель, о котором было сказано выше (стр. 126), следует, что можно увеличить концентрацию аниона енола в реакционной смеси, если один растворитель заменить другим, обладающим меньшей кислотностью. Такая возможность была использована в ряде случаев [31—33], когда реакция алкилирования при применении в качестве растворителя спирта либо не проходила вовсе, либо была затруднена замена спирта на менее кислый растворитель, например на эфир или бензол, позволяла осуществить алкилирование. Если возможно, то как основание, так и енолят должны быть растворимы в выбранном растворителе. В противном случае поверхность основного реагента покроется енолятом металла, что будет препятствовать дальнейшему течению реакции. [c.133]

    Проанализируйте влияние растворителя на положение равновесия укажите, в каком растворителе — бензол, спирт, гексан, тет-рагидрофуран, ацетонитрил, пиридин, триэтиламин — должно быть больше содержание енола. [c.120]

    Влияние природы противоиона и растворителя в реакциях енолят-ионов 25 [c.1315]

    Бромфенол был получен непосредственным бромированием ( )енола в различных растворителях и под влиянием различных бро-мирующих средств i, а также при высокой температуре в отсутствие растворителя Он был получен также декарбоксилированием [c.123]

    На основании изложенных выше представлений было проведено изучение кинетики бромирования различных карбонилсодержащих соединений с целью выяснения влияния внешних (растворитель, катализатор) и внутренних (структура) факторов на изменение констант скоростей процесса. Если высказанные выше соображения (стр. 549) правильны, то изучение кинетики бромирования дает возможность делать выводы также и об изменении констант скоростей енолизации как при образовании устойчивых енолов, так и при псевдомерии. [c.551]


    С другой стороны, влияние катиона на скорость алкилирования может быть объяснено ассоциацией катиона и аниона енола, образующих ионную пару, в неполярных растворителях, в которых влияние катиона проявляется наиболее заметно [30]. Если такие ионные пары менее эффективны в качестве нуклеофильных реагентов, чем свободные анионы енола, то скорость алкилирования будет зависеть от степени ассоциации катиона и аниона енола, образующих ионную пару, причем это свойство должно быть функцией данного катиона, применяемого в определенной системе растворителя. [c.133]

    Степень енолизации может возрастать весьма значительно под влиянием пространственных и электронных факторов. В случае р-дикетонов енольная форма стабилизуется резонансом относительное содержание енола для ацетилацетона в неполярных растворителях достигает 80 /о. [c.384]

    Еще полностью не объяснено влияние различных ионов металлов, ассоциированных с енолят-ионами. Принято писать еноляты натрия как ионы [101], но образование ионной пары может в значительной степени влиять на скорости их реакций в безводных растворителях [102]. Эти эффекты могли бы -усиливаться в реакциях конденсации, включающих дианионы, подобные предложенному промежуточному соединению 49 [103]  [c.172]

    Важнейшими и наиболее подробно исследованными енолами являются производные р-дикарбонильных соединений . Содержание енола в р-дикарбонильных соединениях в значительной мере зависит от их строения. Кроме того, на состояние кето-енольного равновесия, способного к енолизации кетосоединения оказывает влияние природа растворителя. [c.374]

    Учитывая, что сольватация амбидентных анионов в активированных комплексах может существенно отличаться от сольватации свободных анионов, более убедительным представляется другое объяснение влияния растворителей на направленность реакции, основанное на концепции жестких и мягких кислот и оснований (ЖМКО) [275] (см. также разд. 3.3.2) [366]. В амбидентных анионах менее электроотрицательный и более поляризуемый электронодонорный атом обычно является более мягким основанием, в то время как более электроотрицательный атом проявляет свойства жесткого основания Льюиса. Так, в енолят-анионах атомы кислорода и углерода являются жесткими и мягкими основаниями соответственно, в тиоцианат-анионе атомы азота и серы обладают свойствами жесткого и мягкого оснований соответственно и т. д. Направление реакции можно предугадать, если учесть мягкость (или жесткость) электрофильного агента. В протонных растворителях два нуклеофильных центра амбидеитного аниона должны реагировать с двумя электрофильными агентами — протонным растворителем и реагентом КХ, причем протонный растворитель является жесткой кислотой, а КХ — мягкой. Следовательно, в протонных средах [c.345]

    Влияние растворителя на кето-енольное равновесие следует из приведенных пиже числовых данных, указывающих процентное содержание енола в растворах ацетоуксусного эфира в различных растворителях (при малых концентрациях и 18°, по К. X. Майеру) [c.101]

    Влияние растворителя на кетоенольные равновесия. Втабл. 16 г[риведены типичные данные о влиянии растворителей на кетоенольные равновесия. Константы равновесия представляют собою К = [енол]/[кетон]. Как выяснилось, расположение растворителей в ряд по силе их влияния оказалось, в основном, одним и тем же для р-дикетонов и для р-кетоэфиров [128]. Одного взгляда на таблицу достаточно, чтобы видеть, что расположение растворителей по их влиянию на кетоенольные равновесия не может быть поставлено в зависимость ни от диэлектрических постоянных, ни от относительных основностей растворителей. [c.414]

    Так как резонанс водородной связи [130] представляет собою стабилизирующее влияние, то он и усиливает стабилизацию енольной формы по сравнению с кето-формой. Таким образом, любой растворитель, затрудняющий внутрикомплексную циклизацию, будет способствовать переходу в кето-форму. Растворитель может производить такое действие двумя различными способами 1) играя роль донора по отношению к водородному атому гидроксила енольной формы или 2) играя роль акцептора по отношению к кетонному кислородному атому енола. Следовательно, здесь могут проявляться как кислотные, так и основные свойства растворителя, причем в обоих случаях они будут благоприятствовать образованию кетонной формы. Повидимому, этих соображений достаточно для объяснения наблюдаемой последовательности влияний растворителей. Так, вода, будучи наиболее основной, должна быть наиболее эффективной. Продвигаясь далее по списку в табл. 16, мы видим, что все остальные растворители, вплоть до последней апротической пары, находят себе место в последовательности, которая, по всей вероятности, соответствует последовательности их кислотностей, так как следует ожидать, что хлороформ будет проявлять заметные кислотные свойства. [c.415]


    Таким образом, как основность среды, так и природа алкоголята металла влияют на соотношение образующихся изомеров. Причина подобного влияния связана с образованием ионных пар катионами металлов с енолят-анионами кетонов и анионами изонитрозо-)3-дикарбонильных соединений. Полученные результаты по влиянию растворителя, основания и катионов металлов позволяют осуществлять целенаправленный синтез нитрозофенолов. Образованию орго-изомера способствует проведение реакции в среде aHjOK или ИЗ0-С3Н7ОК и соответствующего спирта, пард-изомер преимущественно образуется в среде j Н ONa (Li) и ДМСО. [c.108]

    Если же учитывать другие факторы, влияющие на эффективность стабилизации, то такие водородные связи приводят к уменьшению полярности енола и повышению степеии компактности его молекул по сравнению с менее компактными молекулами кетоформы. Именно поэтому в тех случаях, когда кетонная и енольная формы могут быть изолированы, оказывается, что енольная форма, несмотря на наличие гидроксильной группы, имеет обычно более низкую температуру кипения. Влияние водородной связи на преимущественную стабилизацию енольной формы легко видеть из сравнения процентного содержания аце-.тилацетона XXIV в воде и в несодержащем гидроксильных групп растворителе, например в гексане. Содержание енола в гексане достигает 92% (в чистом жидком ацетилацетоне оно составляет 80%), тогда как в воде (где кетоформа может также образовывать водородные, связи — с молекулами растворителя) оно падает до 15%. [c.263]

    Следует также иметь в виду, что в большинстве случаев шроцессы с участием продуктов переноса электрона протекают на поверхности электрода или вблизи нее, т. е. там, где проявляются многие факторы, связанные с адсорбцией молекул, (Строением двойного электрического слоя, наличием электриче- ского поля высокой напряженности и т. д. Эти факторы влияют на реакционную способность как исходных молекул, так и частиц, образующихся в результате электрохимического процесса,. а также на свойства молекул растворителя например, константа диссоциации молекул воды, адсорбированных на поверхности электрода, возрастает в зависимости от условий на шесть и более порядков. Я. П. Страдынь и В. П. Кадыш [21] показали, что образующиеся в процессе восстановления 2-фенилиндандио-яа-1,3 енолят-анионы превращаются за счет перераспределения электронной плотности под влиянием электрического поля в гкето-форму индандпена, которая и участвует в собственно электрохимической стадии. [c.32]

    Пиррол представляет собой слабую кислоту, сравнимую по силе со спиртами в водном растворе р/Га=17,5. Значение рКа существенно понижается при наличии электроноакцепторных групп в положениях 2 и 5 (например, 2-нитропиррол имеет рК 10,6). Натриевая или калиевая соль пиррола может быть получена реакцией пиррола с амидом металла в жидком аммиаке или с металлом в инертном растворителе. Магниевое производное 12 получают взаимодействием пиррола с этилмагнийбромидом в эфире действием алкиллития синтезируют 1-литийпиррол. N-Meтaллиpoвaнныe пирролы применяются для проведения контролируемых реакций электрофильного замещения (разд. 6.2.4). Их свойства определяются степенью ковалентности связи азот—металл. Все зависит от природы металла и способности растворителя стабилизировать катион металла (можно сравнить с влиянием катиона металла и растворителя на свойства енолят-анионов, основные тенденции очень похожи). Так, натриевая и калиевая соли пиррола — ионные соединения, тогда как в литиевом и магниевом производных преобладает ковалентная связь, если только не присутствует диполярный апротонный растворитель, такой, как гексаметилфосфортриамид. [c.233]

    В диполярных апротонных растворителях, в которых щелочные еноляты в достаточной степени диссоциированы, влияние щелочного катиона выражено слабо [20]. Так, отношение концентраций продуктов алкилирования по С- и 0-центру, в реакции щелочных енолятов ацетилацетона с этилтозилатом в ГМФТА [22] практически не зависит от катиона. Уменьшение концентрации щелочного енолята или переход в такие растворители, как диа-фос и медифос , никаких изменений не вызывает. Очевидно,что в этих условиях кинетическую картину определяет свободный енолят-анион, реакционная способность которого заметно превышает реакционную способность ионных пар. Значения кп и удалось определить при исследовании реакции алкилирования натриевой и калиевой солей ацетоуксусного эфира [24]. Более того, исходя из соотношения концентраций продуктов алкилирования ионных пар и свободного аниона, удалось установить реакционную способность О- и С-центров (табл. 7.7). И в том и в другом случае ионная пара менее активна, чем анион, причем ее реакционная способность в зависимости от размера щелочного катиона для О- и С-центров меняется противоположным образом. В то же время в диоксане в этой же реакции йц.п(О) и Аи.п(С) монотонно увеличиваются с ростом радиуса катиона в ряду Na+[c.260]

    Главной реакцией р-дикетонов является их моно- или диалкилирование по Са через енолят-ион [36]. Для этого обычно используются алкилгалогениды, и поскольку соблюдается нормальный порядок реакционной способности, иодиды предпочтительнее бромидов. Для метилирования и этилирования можно применять диалкилсульфаты, для введения высших алкильных групп — ал-кил-п-толуолсульфонаты применялись также более реакционноспособные фторбораты триалкилоксония. В качестве растворителей часто используют спирты, однако диполярные апротонные растворители, особенно ДМСО, способствуют особенно быстрому протеканию реакций [36, 302]. Гладкое а-алкилирование многих р-дикетонов достигается обработкой метилиодидом или другими активными иодидами в присутствии карбоната калия в качестве основания и с использованием ацетона в качестве растворителя. Другими обычными основаниями служат алкоксиды или гидроксиды щелочных металлов [250, 299, 303]. Если используется 1 экв или более основания, то до некоторой степени может происходить диалкилирование избыток карбоната калия и алкилгалогенида дает прекрасные выходы а,а-диалкилированного продукта. Две различные группы можно ввести путем последовательных реакций [304]. Алкилирование циклогександиона-1,3 изучено особенно подробно влияние многих факторов на эту реакцию суммировано в [300]. [c.631]

    Введение в ароматическое кольцо в орто-положение к карбонильной группе заместителей, имеющих а-водородные атомы, оказывает драматическое влияние на фотохимию. Квантовые выходы нормальных фотопроцессов, таких как фотовосстановление, понижаются за счет конкуренции со стороны фотоенолизация, особого случая отщепления у-водорода, при котором образуется не бирадикал, а о-хинодиметан. Енол (95) в протонных растворителях в присутствии оснований или при высоких температурах легко превращается вновь в исходный материал. Промежуточный фотоенол был обнаружен спектроскопически и может быть зафиксирован по реакции с кислородом [117] или с диенофилами, например с малеиновым ангидридом схема (54) [118] [c.809]

    Положение таутомериого равновесия в известной степени зависит от природы растворителя и концентрации вещества содержание енола увеличивается в малополярных растворителях (сероуглерод, гексан) и при разбавлении. Более важными являются структурные особенности. Ацетон по существу содержит только кето-форму, в р-кетоэфирах содержится больше енольной формы, чем в простых кетонах, а высокое содержание енола в 1,3-дикетонах (ацетнлацетоне и бензоилацетоие) свидетельствует о том, что активация двумя карбонильными группами протекает значительно более эффективно, чем активация при сочетании кето- и эфирной групп. Сопряженная с двойной связью енола фенильная группа способствует енолизации. Влияние двух эфирных групп в диэти- [c.476]

    Помимо повышения стабилизации образование внутримолекулярных водородных связей в молекуле енола уменьшает его полярность и повышает степень компактности его молекулы ( свернутая конформация) по сравнению с более вытянутой конформацией оксоформы. В результате этого енольная форма обычно имеет более низкую температуру плавления, чем оксоформа (это обнаружено в тех случаях, когда обе формы удается разделить), несмотря на наличие гидроксильной группы. Влияние внутримолекулярных водородных связей на преимущественную стабилизацию енольной формы видно также при сравнении содержания енольной формы соединения (31) в различных растворителях, а также в его жидкой и газовой фазах  [c.316]

    Среда оказывает существенное влияние на положение таутомерного равновесия (табл. 32). Так, полярные растворители (гидрофильные) смещают равновесие ацетоуксусного эфира в сторону кетонной формы и понижают содержание енола, а неполярные растворители (гидрофобные) увеличивают содержание енольной формы. [c.202]

    Направление альдольных присоединений к несимметричным кетонам и других сходных реакций, например алкилирования, соответственно зависит (и иногда очень сильно) от растворителя об этом речь пойдет позднее. Кроме того, можно показать и наличие пространственных влияний кетоны типа R— Hj—СО—GH3 при неразветвленном R в 1,2-диметоксиэтане в присутствии Na или К дают оба енола в соотношении примерно 1 1. Если же группа R разветвлена либо кетон имеет строение КгСН—СО—СН3, то образуется преимущественно енолят с концевым положением двойной связи [150]. [c.345]

    Следовательно, замечания Бурра и Дьюара щ )авомочны только в том случав, если имеется сильная сольватация енолят-иона. 6 качестве примера влияния природы растворителя на конфигурацию продуктов можно привести перегруппировку следующего галогенкетона [67] (основание СНзОЫа)  [c.30]


Смотреть страницы где упоминается термин Енолы, влияние растворителя: [c.1343]    [c.511]    [c.111]    [c.449]    [c.133]    [c.133]    [c.557]    [c.589]    [c.146]    [c.199]    [c.537]    [c.589]    [c.144]    [c.19]    [c.210]   
Принципы органического синтеза (1962) -- [ c.551 ]




ПОИСК





Смотрите так же термины и статьи:

Еис-еноляты

Енолы

енол



© 2024 chem21.info Реклама на сайте