Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массопередача с химической реакцией в жидкой фазе

    Расчеты аппаратов, в которых процессы массообмена сопровождаются химическими реакциями, носят оценочный характер и могут выполняться различными способами. Наиболее простым и практически удобным является подход, изложенный в [46]. Предполагается, что движущая сила процесса хемосорбции равна движущей силе физической абсорбции, а ускорение процесса массообмена химической реакцией учитывается поправкой к коэффициенту массопередачи в жидкой фазе, определенному по критериальным зависимостям для физической абсорбции. Величины поправок для двух типов химических реакций, называемые коэффициентами ускорения к, представлены на графике рис. 5.45. [c.358]


    IX-1-3. Сопротивление массопередаче в жидкой фазе и межфазная поверхность. Для оценки влияния химической реакции на скорость абсорбции газа необходимо знать величины и ав отдельности. Величина объемного коэффициента kiO. может быть легко измерена путем абсорбции с учетом сопротивления в газовой фазе или при полном устранении сопротивления со стороны газа в таких измерениях. Если независимо от этого определить а, то по величинам к а [c.207]

    Гетерогенная модель. Если скорость процесса массопередачи мала или сравнима со скоростью реакции Гел, то равновесие между газом и жидкостью не достигается нигде в объеме аппарата. Поэтому для расчета степени превращения уравнения (5.13) и (5.14) должны быть решены одновременно. В этом случае конверсия строго зависит от величины межфазной поверхности а, и выбор условий проведения процесса более сложен, чем в первом случае. Типичными примерами таких ситуаций являются процессы абсорбции, сопровождающиеся химической реакцией абсорбируемого компонента в жидкой фазе. [c.241]

    Следует еще остановиться на определении величины — межфазного коэффициента массопередачи в уравнении (10.11) — применительно к суспендированному катализатору. Поскольку в процессах с гетерогенным катализатором реакция идет на поверхности последнего, то перенос массы на границе фаз протекает в отсутствие-химической реакции. Поэтому для определения значения коэффициентов межфазного переноса в аппаратах с суспендированным катализатором, где велика доля жидкой фазы, инертной в отношении химической реакции, очевидно, можно пользоваться формулами для расчета межфазного массообмена, приведенными в гл. 12 настоящей книги. [c.188]

    При изучении хемосорбционных процессов следует совместно рассматривать закономерности массопередачи и химической кинетики, так как скорости диффузионных этапов и химических стадий могут быть сопоставимы. Поэтому количественная характеристика хемосорбционных процессов связана со многими дополнительными факторами. Реакция в жидкой фазе понижает концентрацию поглощаемого газового компонента в жидкости, что увеличивает движущую силу процесса и ускоряет его по сравнению с физической абсорбцией. Увеличение общей скорости процесса тем больше, чем выше скорость реакции в жидкой фазе. В соответствии с этими особенностями при количественном выражении хемосорбционных процессов обычно вводятся поправки к величине движущей силы или коэффициента массопередачи, которые характеризуют равновесие и скорость реакции в жидкой фазе. При значительных скоростях реакции сопротивление жидкой фазы становится пренебрежимо малым. Наоборот, при медленной реакции ускорение процесса также мало и им можно пренебречь, рассматривая процесс как физическую абсорбцию. Движущую силу абсорбционных процессов наиболее точно можно выразить следующим образом [см. формулу (VI.14)]  [c.161]


    Массопередача через сферическую границу раздела фаз в системе с химической реакцией изучалась в другой работе Джонсона и Ока-ката [43]. Авторы рассмотрели стационарную задачу о массопередаче, осложненной химической реакцией, от твердых и жидких сфер при низких значениях критерия Ке для случая реакции первого порядка. [c.233]

    Наиболее распространенным в настоящее время методом определения ПКФ является химический метод, основанный на учете известной скорости химической реакции. Этот метод применим для режимов, когда массопередача в жидкой фазе не зависит от гидродинамики последней. С помощью химического метода обнаружено [381, 387], что разница между общей и эффективной межфазной поверхностью, полученной по скорости химической реакции существенна. Активная доля ПКФ, полученная в работе [381], оказалась равной 145—263 м /м . В работе [425] значения Ях,,.,, колебались в пределах 197—228 м м . [c.70]

    При температурах сталеплавильного производства (1500—1600° С) константы скоростей химических реакций значительно превышают соответствующие величины, характеризующие массопередачу. Поэтому естественно допустить, что суммарная скорость процессов рафинирования определяется величиной конвективной диффузии во взаимодействующих жидких фазах. Обычно металлический и [c.376]

    Опытные данные показывают, что при растворении газов в жидких металлах и при их дегазации соответствующие химические реакции происходят быстрее, чем массопередача. Поэтому на границе фаз устанавливается равновесие, и скорость процесса определяется массопередачей через два пограничных слоя. Один из них лежит в газовой фазе, а другой в металлической (рис. ХП.З.). При стационарном течении процесса количество вещества dn, перенесенного через единицу поверхности раздела фаз S, за единицу времени выражается уравнением [c.260]

    В случаях диффузионной и смешанной задач переноса, когда скорость химической реакции интенсифицирует как массоотдачу в жидкой фазе, так и в целом массопередачу из одной фазы в другую, вводят понятие о коэффициенте ускорения абсорбции ф = / x за счет химической реакции. Величина этого коэффициента зависит от скорости и порядка химической реакции, ее константы равновесия.  [c.947]

    В случае протекания в жидкой фазе химической реакции, сопровождающей абсорбцию, общий козффициент абсорбции, отнесенный к жидкостной пленке, обычно будет больше, чем достигаемый при простой физической абсорбции. Однако при очень медленно протекающих реакциях (например, реакция двуокиси углерода с водой) растворенные молекулы успевают, по-видимому, продиффундировать в основное ядро жидкости до начала химической реакции, и общий коэффициент массопередачи увеличится лишь незначительно. В этом случае определяющим фактором является сопротивление жидкостной кленки можно предположить, что на поверхности раздела фаз жидкост . находится в равновесии с газом и коэффициент массопередачи зависит от разности молярных концентраций СО 2 на поверхности раздела фаз и в основном ядре жидкости. [c.15]

    В соответствии с двумя способами анализа абсорбции, сопровождаемой химической реакцией в жидкой фазе, можно пользоваться коэффициентом массопередачи Ку, определяемым с помощью уравнения (6.82) по величине /Зж (в этом случае движущая сила в жидкой фазе равна ДС + ЬС), или же коэффициентом массопередачи К , определяемым по величине /3 из аналогичного уравнения 282 [c.282]

    Теоретические основы инженерных методов расчета кинетики массопередачи с химической реакцией в жидкой фазе [c.10]

    Кинетика массопередачи с химической реакцией в жидкой фазе [c.18]

    Отметим, что практически во всех работах анализ кинетики массопередачи с химической реакцией в жидкой фазе выполнен на основе принципа независимой диффузии. По-видимому, это является оправданным [29, 42], поскольку содержание в жидкости ключевого (передаваемого из газовой фазы) компонента мало, и бинарные коэффициенты молекулярной диффузии компонентов в жидкой фазе отличаются незначительно. [c.21]

    В табл. 2.5 приведены уравнения, рекомендуемые для расчета коэффициентов ускорения конкретных технологических процессов массопередачи с химической реакцией в жидкой фазе. [c.31]

    При практическом использовании уравнения (2.39) для расчета массопередачи с химической реакцией необходимы также физико-химические параметры, как физическая растворимость передаваемого компонента в жидкости, константа скорости прямой реакции и константа равновесия химической реакции, коэффициенты молекулярной диффузии реагентов в жидкой фазе. Ряд необходимых сведений содержится в монографиях [1, 6, 26, 27, 62] и в журнальных публикациях, например [8, 63—70], однако сложность вопроса, связанная, например, с зависимостью физико-химических параметров от концентрации и температуры раствора хемосорбента, а также с невозможностью [c.49]


    Кинетика массопередачи со сложными химическими реакциями в жидкой фазе [c.75]

    Указанный алгоритм расчета массопередачи со сложной химической реакцией разработан для одного компонента, который вступает в химические реакции с активными реагентами жидкой фазы. Однако основные положения алгоритма, по-видимому, можно рекомендовать и для расчета массопередачи двух компонентов газа с последующими последовательно-параллельными реакциями произвольной скорости в жидкой фазе. [c.89]

    Таким образом, эффект поверхностной конвекции находи, широкое распространение в процессах массопередачи в системах газ — жидкость с химической реакцией в жидкой фазе. Интенсификация процесса массопередачи, обусловленная поверхностной конвекцией, достаточно велика, слол<ным образом зависит от ряда параметров и может быть реализована, что очень важно, в условиях интенсивной вынужденной конвекции. [c.114]

    Мгновенная химическая реакция, ВОг=Вож- о°. Если сопротивление массопередаче сосредоточено главным образом в жидкой фазе, то из уравнений (5.31), (5.32), (5,39) и (5,40) [c.156]

    Одномерная диффузионная модель во многих случаях достаточно полно отражает физическую сущность массопередачи в колонных аппаратах. По-видимому, использование однопараметрической модели обеспечивает для большинства практических задач разумное сочетание ясности физической картины, возможности сравнительно несложного определения параметров модели и доступности математического решения. Как показано в гл. 6, метод расчета массопередачи с химической реакцией в жидкой фазе, основанный на использовании системы уравнений (5.6) и (5.7) с коэффициентом ускорения массопередачи, определяемым уравнением (2.58), обеспечивает надежность решения практических вопросов хемосорбции и может быть положен в основу математического моделирования химико-технологических процессов. [c.159]

    На основе этих представлений проведен анализ кинетики массопередачи, сопровождающейся химической реакцией в жидкой фазе. [c.221]

    Проведен анализ более сложных случаев хемосорбции. Рассмотрена кинетика процесса одновременной хемосорбции двух компонентов газа с параллельными необратимыми химическими реакциями в жидкой фазе. Сопоставление приближенных аналитических и численных решений позволило рекомендовать инженерные методы расчета взаимосвязанных коэффициентов ускорения массопередачи двух передаваемых компонентов газовой фазы в зависимости от степени исчерпывания хемосорбента на границе раздела фаз. [c.222]

    Разработан метод кинетического расчета массообменных аппаратов для хемосорбционного разделения газов. Метод основан на использовании теоретического значения ускорения массопередачи за счет протекания химической реакции. Метод учитывает принципиальную особенность хемосорбционных процессов изменение кинетических закономерностей в жидкой фазе, движущей силы процесса, коэффициентов массопередачи, соотношения фазовых сопротивлений по высоте аппарата. Учтена специфика влияния реальной структуры потоков газа и жидкости на эффективность хемосорбционных процессов. По предложенной методике коэффициент извлечения передаваемого компонента, степень насыщения хемосорбента и характер распределения концентраций по высоте аппарата определяются при необратимой хемосорбции в зависимости от следующих безразмерных параметров кинетических, стехиометрического, диффузионного и гидродинамических (числа Боденштейна для жидкой и газовой фазы). В общем виде процесс описывается системой нелинейных дифференциальных уравнений второго порядка. [c.224]

    Для жидкофазного окисления углеводородов химическое превращение осуществляется только в жидкой фазе. Для любой "барботажной" газожидкостной системы для труднорастворимого газа и относительно медленных реакций сопротивлением газовой фазы можно пренебречь и поэтому коэффициент массопередачи будет определяться как коэффициент массоотдачи в жидкой фазе. [c.99]

    Перемешивание в жидкой среде можно определить как процесс относительного перемещения макроскопических элементов объема жидкой среды. Перемешивание применяется для многих целей, из которых основными являются 1) интенсификация процессов тепло — и массопередачи, особенно при проведении различных химических реакций 2) получение однородных смесей — растворов, а также суспензий и эмульсий. Перемешиваемая среда может быть однородной (однофазной) либо представлять собой двух- или многофазную систему. В последнем случае сплошной фазой является жидкость, а дисперсной — сыпучий твердый материал, жидкость, газ. Физические свойства подвижных сред, с которыми приходится иметь дело в процессах перемешивания, изменяются в широких пределах, а неоднородные системы (эмульсии, суспензии, газо- [c.213]

    Сравнение коэффициентов абсорбции СО2 различными жидкостями (табл. VI-51) показывает, что только для сильно концентрированных растворов щелочи заметно влияние сопротивления газовой фазы. К сожалению, общепринятые методы расчета Яж непригодны для случая, когда в жидкой фазе протекает химическая реакция—здесь приходится опираться только на опытные данные. В подобных системах скорость массопередачи зависит не только от обычных параметров, но также от концентрации реагентов и температуры. Поэтому обобщить подобные данные на основе теории физической абсорбции невозможно. Рекомендуется обратиться к гл. I (т. И) и литературе к табл. VI-50. [c.422]

    Поскольку в аппаратах с твердым катализатором реакция идет на поверхности последнего, то перенос массы на границе фаз протекает в отсутствие химической реакции. Поэтому для определения значений коэффициентов межфазного переноса в аппаратах с суспендированным катализатором, где велика доля жидкой фазы, инертной в отношении химической реакции, можно пользоваться формулами, принятыми для расчета чисто массообменных аппаратов, например из [5]. Для неподвижного слоя катализатора за неимением более точных и обоснованных выражений в первом приближении, видимо, можно использовать формулу (7) для расчета коэффициентов межфазного переноса при наличии химической реакции. Тогда будут получены нижние значения коэффициентов массопередачи, поскольку здесь не учитывается увеличение градиента концентраций между жидкостью и газом, получаемое за счет протекания химической реакции на катализаторе, объем которого сравним с объемом жидкой фазы. [c.82]

    Исследование реакторов для систем газ—жидкость с целью их эасчета и проектирования ведется в следующих направлениях 10] изучение механизма и скорости процесса массопередачи, осложненного химической реакцией моделирование структуры потоков двухфазной системы оценка влияния продольного перемешивания на эффективность реакторов определение межфазной поверхности, удерживающей способности, перепада давления. Важным вопросом является выбор типа реактора. Сравнение коэффициентов массоотдачи по жидкой фазе для систем газ—жидкость в различных реакторах приведено в табл. 4.1 [10]. [c.83]

    Влияние химической реакции в жидкой фазе на коэффициент массопередачи в насадочной колонне описывают Данквертс и Кеннеди. Они проверяют применимость теории проницания (либо в виде предположения Хигби о времени контакта жидкости, либо в виде допущения Данквертса об обновлении поверхности). Авторы измеряли скорость абсорбции СОг раствором NaOH в насадочной колонне диаметром 100 Мм. с фарфоровыми кольцами Рашиг 1 12X12 мм. Определялись также коэффициенты массоотдачи без реакции k a в нереагирующем растворе, физические свойства которого бЫли аналогичны свойствам раствора NaOH. [c.423]

    Рассмотрим кинетику массопередачи в процессе многокомпонентной хеморектификации, принимая следующие предположения а) химическая реакция протекает только в жидкой фазе б) кинетика реакций может быть сведена к линейной относительно вектора, составов. Принятые предположения не снижают общности поставленной задачи, так как, во-первых, в большинстве хеморектифи-кационных процессов реакции протекают в жидкой фазе или химическое взаимодействие в паровой фазе настолько мало, что им можно пренебречь без ущерба для точности расчетов, и, во-вторых,, кинетика любых реакций может быть сведена к линейной относительно вектора составов [78]. [c.349]

    Основу математического описания массопередачи в процессах хеморектификации составляют уравнения, определяющие диффузионные потоки компонентов (7.219). Для расчета коэффициентов-массоотдачи в паровой фазе можно воспользоваться, как и ранее, решением уравнений Максвелла—Стефана, а коэффициенты массоотдачи в жидкой фазе г) с учетом химической реакции определяются следуюпщм образом. [c.349]

    Химическое превращение, осуществляемое в реакторе путем сложного физико-химического процесса, происходит обычно по уе всегда понятному и лишь частично известному механизму. Это относится как к массопередаче, так и к химической реакции. Например, для массопередачи между двумя песмешивающимися жидкими фазами предложено несколько физических моделей, дающих представление о механизме явления каждая из таких моделей соответствует эксперименту только в определенных условиях работы и лишена смысла, если эти условия меняются. Области применимости различных моделей могут иногда накладываться одна на другую, но чаще всего они не совпадают. [c.17]

    Элементы расчета абсорбционных и хемосорбциониых процессов и типы применяемых реакторов рассмотрены в ч. I, гл. VI. Основные технологические показатели абсорбционной очистки степень очистки (КПД) г) и коэффициент массопередачи А определяются растворимостью газа, гидродинамическим режимом в реакторе Т, Р,ю) и другими факторами, в частности равновесием и скоростью реакции при хемосорбции. При протекании реакции в жидкой фазе величина к выше, чем при физической абсорбции. При хемосорбции резко меняются равновесные соотношения, в частности влияние равновесия на движущую силу абсорбции. В предельном случае для необратимых реакций в жидкой фазе (нейтрализация) образующееся соединение и еет практически нулевое давление паров над раствором. Однако такие хемосорбционные процессы нецикличны (поглотительный раствор не может быть вновь возвращен на очистку) и целесообразны лишь при возможности использования полученных растворов иным путем. Большинство хемосорбциониых процессов, применяемых в промышленности, обратимы и экзотермичны, поэтому при повышении температуры раствора новое соединение разлагается с выделением исходных компонентов. Этот прием положен в основу регенерации хемосорбентов в циклической схеме, тем более, что их химическая емкость мало зависит от давления. Хемосорбционные процессы особенно целесообразны таким образом для тонкой очистки газов, содержащих сравнительно малые концентрации примесей. [c.234]

    Шулмен с сотр. [591 предположили, что при испарении чистых жидкостей вся смоченная поверхность является активной, а при абсорбции хорошо растворимого газа часть смоченной поверхности, соответствующая застойным зонам, неактивна, так как жидкость в данных зонах быстро насыщается поглощаемым газом. Этим можно объяснить, что при испарении активные поверхности и, следовательно, объемные коэффициенты массопередачи выше, чем при абсорбции. Повышение активности жидкости в застойных зонах можно ожидать и при абсорбции, сопровождаемой быстрой химической реакцией в жидкой фазе. В указанном случае при достаточно большой концентрации активной части поглотителя малоподвижная жидкость в застойных зонах становится активной. Активность застойных зон зависит от концентрации газа с увеличением концентрации поглощаемого компонента в газе жидкость в зонах быстрее насыщается газом и активная поверхность уменьшается.. [c.452]

    В ряде работ исследована теория некоторых специальных случаев одновременной абсорбции двух компонентов газа. Так, рассмотрена проблема [80, 90], связанная с химическим взаимодействием компонентов между собой после перехода их в жидкую фазу. Получены приближенные аналитические и численные решения для абсорбции двух газов, сопровождаемой сложной реакцией, в частности последовательно-параллельной реакцией, включающей две необратимых и одну обратимую реакцию [91]. Предполагается, что по такой схеме может протекать реакция хлоргидрирования этилена. Массопередача со сложной реакцией изучена также в работах [58, 92—94, 96]. Наконец, в работе [95] рассмотрена теория кинетики двухкомпонентной хемосорбции, осложненной обратимыми химическими реакциями, однако анализ ограничен областью протекания мгновенной реакции. [c.85]

    Из экспериментальных работ, посвященных изучению влияния эффекта поверхностной конвекции на скорость массопередачи без химической реакции, необходимо отметить исследования [123, 125—128]. П. Бриан с сотр. [125] в пленочной колонне из разбавленных водных растворов десорбировали в азот вещества, понижающие поверхностное натяжение (метилхло-рид, этиловый эфир, триэтиламин, ацетон). Интенсивность нестабильности критерия Марангони оценивали трассерным методом в качестве инертного трассера использовали для жидкой фазы пропилен, для газовой фазы — воду. Результаты работы свидетельствуют о том, что по достижении критического значения числа Марангони коэффициент массоотдачи в жидкой фазе увеличивается, причем максимальное увеличение составляет 3,6 (по сравнению с десорбцией пропилена из воды). Это косвенно свидетельствует о существовании поверхностной конвекции в жидкой фазе. В газовой фазе коэффициент массоотдачи оставался постоянным. [c.98]

    Предполагается постоянство продольной составляющей скорости жидкости вблизи поверхности раздела фаз. Введением эффективной скорости переноса, а в конечном итоге использованием физического коэффициента массоотдачи в жидкой фазе, который определяют экспериментально или рассчитывают с помощью нолуэмппрических зависимостей. Предлагается учитывать увеличение скорости массопередачи с химической реакцией произвольной скорости за счет турбулентности потока (турбулентных пульсаций) в одномерном приближении. [c.221]

    Абсорбция, сопровождающаяся химической реакцией. При наличии в жидкой фазе быстрой необратимой химической реакции скорость абсорбции определяется только сопротивлением массопередаче в газовой фазе. В этом случае скорость массопередачи можно установить, используя метод определения Яг. Примером может служить абсорбция NH3 раствором кислоты, SO2 раствором щелочи, H2S из разбавленного газа крепким раствором щелочи (пока растворенный в жидкости реагент быстро связывает растворенный газ). Расчет высоты колонны становится относительно простым, так как равновесное противодавление газа над раствором равно нулю. Даже" если реакция достаточно обратима, чтобы обеспечить небольшое противодавление, абсорбция может определяться сопротивлением газовой фазы и величина Яг, которая применима для случая физической абсорбции, Цррделяет скорость процесса. [c.422]


Смотреть страницы где упоминается термин Массопередача с химической реакцией в жидкой фазе: [c.166]    [c.228]    [c.121]   
Газожидкостные хемосорбционные процессы Кинетика и моделирование (1989) -- [ c.10 , c.21 , c.92 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкая фаза

Жидкая фаза химическая реакция

Массопередача

Массопередача массопередачи

Реакция жидкой фазе



© 2024 chem21.info Реклама на сайте