Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностные соединения на катализаторе

    Для гомогенных реакций задача установления механизма часто упрощается тем, что механизмы многих таких реакций одинаковы и их переходные состояния весьма сходны. В случае же превращений на гетерогенных катализаторах возникает новый специфический, очень трудно учитываемый фактор — образование и последующие превращения поверхностно-адсорбированного соединения. Действительно, главная трудность в интерпретации механизма гетерогенно-каталитической реакции заключается в том, что сама поверхность активно участвует в реакции и является, по существу, одним из реагентов. К тому же активная поверхность обычно неоднородна, содержит разные типы активных центров, а сложно построенные органические молекулы могут по-разному ориентироваться на одних и тех же типах активных центров. Задача усложняется еще и тем, что чрезвычайно трудно определить концентрацию активной поверхности в момент реакционного акта. Тем более важной становится информация о геометрии размещения поверхностных атомов катализатора, т. е. о типе кристаллической решетки, ее нарушениях, а также о пространственном расположении реагирующих и образующихся соединений на активных центрах. Сумма этих знаний может способствовать пониманию стереохимии поверхностно-адсорбированного комплекса, т. е. дать углубленные представления о механизме гетеро-генно-каталитической реакции. [c.10]


    При организации гетерогенного каталитического процесса очень важен практический вопрос, есть ли в данной реакционной системе предпосылки для саморегулирования Для ответа на этот вопрос могут быть использованы различные экспериментальные методы, с помош,ью которых либо оценивается применимость выводов теории, либо выявляется механизм реакции и устанавливаются такие факты, как суш,ествование воздействий на дезактивацию и регенерацию катализатора в ходе реакции, поведение системы вблизи или вдали от равновесия, особенности кинетики реакций, наличие общей стадии в реакции модификации катализатора и каталитической реакции и т. п. При этом в качестве методов исследования воздействия среды на катализатор могут использоваться комбинация стационарного и нестационарного (например, импульсного) способов воздействия исследование природы промежуточных поверхностных соединений физическими методами идентификация новых состояний, возникающих в ходе каталитического процесса, и т. п. [c.300]

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]


    Как и в случае гомогенного катализа, при гетерогенном катализе реакция протекает через переходные состояния. Но здесь эти состояния представляют собой поверхностные соединения катализатора с реагирующими веществами. Проходя через ряд стадий, в которых участвуют эти переходные состояния, реакция заканчивается образованием конечных продуктов, а катализатор в результате не расходуется. Кроме того при гетерогенном катализе следует иметь в виду следующие его стадии адсорбцию взаимодействующих веществ на катализаторе изменение электронного строения адсорбированных молекул из-за их взаимодействия с атомами кристаллической решетки катализатора накопление реагируюш,их молекул на поверхности катализатора. [c.200]

    Как и в случае гомогенного катализа, при гетерогенном катализе реакция протекает через активные промежуточные соединения. Но здесь эти соединения представляют собой поверхностные соединения катализатора с реагирующими веществами. Проходя через ряд стадий, в которых участвуют эти промежуточные соединения, реакция заканчивается образованием конечных продуктов, а катализатор в результате не расходуется. [c.176]

    Поскольку этот метод прост и удобен, его используют как для гомогенных, так и для гетерогенных и гетерогенно-каталитических реакций. В последнем случае рассматривают элементарные акты с участием реагирующих веществ и активных центров катализатора Z с образованием неустойчивых поверхностных соединений. Принцип стационарности применяют по отношению к неустойчивым поверхностным соединениям. [c.175]

    Более сложен механизм гетерогенного катализа. В этом случае существенную роль играет поглощение поверхностью катализатора реагирующих частиц. Процесс также протекает в несколько стадий. Начальными стадиями являются диффузия частиц исходных реагентов к катализатору и поглощение частиц его поверхностью (активированная адсорбция). Последний процесс вызывает сближение молекул и повышение их химической активности, прн этом под влиянием силового поля поверхностных атомов катализатора изменяется структура электронных оболочек молекул н, как следствие, понижается активационный барьер. В результате на катализаторе происходит реакция. Затем продукты взаимодействия покидают катализатор и, наконец, в результате диффузии переходят в объем. Таким образом, в гетерогенном катализе образуются промежуточные поверхностные соединения. [c.225]

    Процесс формирования промежуточных поверхностных соединений происходит на активных участках активные центры) катализатора. Силовые поля активных центров ослабляют связи между атомами адсорбированных молекул, что и приводит к возрастанию реакционной способности. Важно подчеркнуть, что активные центры составляют весьма небольшую долю поверхности. Это подтверждается действием каталитических ядов, блокирующих активные центры ничтожное количество их уменьшает активность катализатора или выводит из строя большие его массы. Путем дозировки отравления можно даже определить число активных центров на поверхности катализатора. [c.125]

    После предварительной продувки закоксованного катализатора азотом при 620 вместо 443°С скорость окисления резко уменьшается и температурный скачок почти полностью исчезает. Вероятно, предварительная высокотемпературная обработка вызывает разрушение активных поверхностных соединений. [c.73]

    Обычно сильные яды образуют прочные поверхностные соединения с катализатором. Сера образует с платиной устойчивые сульфиды (211]  [c.93]

    Если при действии серусодержащих соединений на алюмоплатиновый катализатор происходит частичное превращение платины. в сульфид Р15 2П ], то это еще не означает полной дезактивации осерненной части металла. Так, поданным [192] сульфиды платины катализируют селективное гидрирование диолефинов и циклодиенов в более стабильные углеводороды с одной двойной связью. Возможно, что ненасыщенные поверхностные соединения, ответственные за образование кокса на платине, подвергаются гидрированию на сульфиде этого металла, что может способствовать снижению коксообразования. [c.97]

    Обратимое взаимодействие катализатора с одним из исходных реагентов с образованием промежуточного поверхностного соединения А [К 1 [c.62]

    В настоящее время предложено несколько приближенных теорий, в которых проблема гетерогенного катализа рассматривается на основе различных упрощающих предположений. Согласно современным теориям гетерогенного катализа реагирующие молекулы образуют с катализатором поверхностные промежуточные соединения. Различие между разными теориями гетерогенного катализа заключается, в основном, во взглядах на природу поверхностных соединений и на природу активных мест поверхности катализатора, участвующих в образовании поверхностных соединений. [c.437]


    Большой вклад в развитие представлений о механизме каталитического действия внесли подходы, развитые рядом авторов теория активных ансамблей Кобозева [5], химическая теория активной поверхности Рогинского [6], теория Борескова промежуточного химического взаимодействия в гетерогенном катализе и зависимости удельной каталитической активности от химического состава и строения катализатора [7], теория Писаржев-ского о связи электронных свойств твердого тела с его каталитической способностью [8], электронные теории кристаллического поля и поля лигандов [91, теория поверхностных соединений координационного и кластерного типов [9] и др. [c.11]

    Во-первых, прежде всего из числа веществ, выбираемых в качестве катализатора для данной реакции, нужно исключить твердые ве[цества, которые не могут образовывать поверхностные химические соединения с реагирующими веществами. При этом нужно учесть, что поверхностные соединения могут по своему составу отличаться от объемных фазовых соединений. Так, например, окись меди может на своей поверхности хемосорбировать кислород с образованием поверхностных соединений типа растворов кислорода в окиси меди с выделением значительного количества" тепла. [c.461]

    При гетерогенных каталитических реакциях промежуточные соединения образуются на поверхности катализатора. В этом случае вопрос значительно усложняется структурой поверхности, характером сорбции и т. д. Можно, однако, считать, что при гетерогенном катализе при взаимодействии реагентов с поверхностными атомами катализатора образуются вещества, мало отличающиеся от обычных химических соединений. При контактном окислении SO. воздухом над Fe. Oy протекают реакции  [c.26]

    Активаторы и антикатализаторы различаются также по величинам атомных объемов, температурам плавления и кипения. Активаторы характеризуются высокими температурами плавления и кипения специфические же контактные яды чаще всего летучи, но обладают высокими температурами адсорбции, что является критерием образования прочных химических соединений с поверхностными атомами катализатора и блокировки активных центров, сопряженной с прекращением контактных реакций. [c.82]

    Свободные электроны и свободные дырки не локализованы, а способны мигрировать, образуя свободные положительные и отрицательные валентности, которые могут исчезать и появляться. При встречах таких свободных валентностей происходит взаимное насыщение. Последнее может происходить и при встречах с приходящими извне атомами или молекулами, обладающими ненасыщенными валентностями. Это приводит к хемосорбции, т. е. поверхностному соединению с кристаллом или катализатором (типа полупроводника). Таким образом, катализаторы ионной структуры следует рассматривать как полирадикал с блуждающими по поверхности ненасыщенными свободными валентностями. [c.161]

    Катализатор направляет реакцию по другому пути, требующему меньшей затраты энергии, через образование поверхностных соединений с катализатором. Энергия активации при этом снижается. [c.114]

    Активность гетерогенных катализаторов зависит от физического или химического сродства катализатора к одному или нескольким реагентам. Так, платина, никель, медь и палладий, катализирующие реакции гидрирования и дегидрирования, легко адсорбируют водород, образуя с ним поверхностные соединения типа Ме — Н, а палладий даже способен растворять его. Катали- [c.349]

    Теория поверхностных соединений возникла очень давно. Она рассматривает каталитический процесс как совокупность чередующихся стадий образования поверхностных соединений катализатора с реагирующими веществами и разрушения этих соединений с выделением продуктов реакции. Поверхностные соединения образуются в результате химического взаимодействия моле.кул реагируюших веществ с атомами (или ионами) поверхностного слоя катализатора. Химические связи в этих соединениях могут быть ионными, ковалентными или полярными. Состав, строение и свойства этих соединений зависят от вида реагирующих веществ и катализатора, а также от состояния поверхности его и от внешних условий. В катализе могут играть роль только соединения, легко образующиеся и легко разрушающиеся. Поэтому соответствующие связи в них не должны быть ни слишком слабыми, ни слишком прочными. [c.380]

    Промежуточные поверхностные соединения катализатора с реагирующими веществами рассматриваются теорией поверхностных соединений. Характеризуя современное состояние этой теории, можно сказать, что она рассматривает тталиттеский процесс как совокупность чередующихся стадий образования этих соединений и их разрушения с выделением продуктов реакции. Поверхностные соединения образуются в результате химического взаимодействия молекул реагирующих веществ с атомами (или ионами) поверх-носрвого слоя катализатора, которые при этом сохраняют свои связи с другими атомами (или ионами) решетки кристалла. Хими-чеокив связи в этих соединениях могут быть как ионными, так и ковалентными и полярными. Состав, строение и свойства этих соединений зависят от вида реагирующих веществ и катализатора, а также от состояния поверхности его и от внешних условий. В катализе могут играть роль только соединения, легко образующиеся и легко разрушающиеся при дальнейшем взаимодействии. Поэтому соответствующие связи в них не должны быть ни слишком слабыми, ни слишком прочными. [c.692]

    Поверхностные соединения образуются также другими хорошо известными ядами серой, мышьяком и фосфором, и oiin, вероятно, более стабильны, чем соединения кислорода, поэтому восстановление каталитической активности после отравления происходит очень медленно, если вообще оно происходит. Более низкие концентрации этих элементов (предположительно, одна десятая от концентрации кислорода) производят аналогичное отравляющее действие. Хлор, вероятно, вызывает дезактивацию по механизму, описанному в гл. 2, и, поскольку КС1 обладает летучестью, то это приводит к потере щелочи из катализатора. [c.164]

    Можно рассматривать каталитический процесс как совокупность чередующихся стадий образования этих соединений и их разрушения с выделением продуктов реакции. Поверхностные соединения образуются в результате химического взаимодействия молекул реагирующих веществ с атомами (или ионами) поверхностного слоя катализатора, которые при этом сохраняют свои связи с другими атомами (или ионами) рещетки кристалла. В катализе могут играть роль только соединения, легко образующиеся и легко разрушающиеся при дальнейшем взаимодействии. [c.496]

    Данный катализатор обладает способностью образовывать поверхностные соединения большей частью с такими веществами, с которыми он может (хотя бы в других условиях) вступать в химическое взаимодействие с образованием обычных (неповерхно- [c.496]

    Эти выводы теории А. А. Баландина ( принцип энергетического соответствия ) в общем виде подтверждаются многими примерами, однако применение теории для расчета энергий активации весьма ограничено отсутствием в большинстве случаев данных о прочности связей с катализатором. Во всяком случае слишком слабое (ЕСкх < С АВ + ( св) или слишком сильное (X Ркх > Сав + + Q D) взаимодействие с катализатором ведет к высокому значению энергии активации, и катализ не осуществляется. В нервом случае реагенты активируются катализатором в малой степени, а во втором происходит по существу реатоия с поверхностью катализатора с образованием прочных поверхностных соединений. [c.150]

    Так, например, на катализаторе из окиси алюминия этанол разлагается с выделением воды, а на медном катализаторе — с выделением водорода, Согласно мультиплетной теории на поверхности окиси алюминия активные места образуют дуплеты. При адсорбции молекулы этанола на дуплете окиси алюминия образуется поверхностное соединение (мультиплетный комплекс), причем два атома углерода располагаются около одного атома дуплета, а водород и гидроксил около другого  [c.438]

    Первый катализатор (кривая /) не будет достаточно активен, так как энергия связей в мультиплетиом комплексе М слишком мала, а энергия активации Ез II стадии реакции велика. Поэтому скорость всей реакции на первом катализаторе будет мала. Третий катализатор (кривая <3) также будет малоактивен, так как энергия связей атомов А, В, С и D с атомами К мультиплета слишком велика. Поэтому будет велика энергия активации Еа распада мультиплетного комплекса, а скорость III стадии реакции — мала. Третий катализатор дает слишком прочное поверхностное соединение с реагирующими молекулами. Поэтому почти все атомы мультиплетов оказываются связанными в мультиплетные комплексы, и катализатор неактивен. [c.442]

    Во-вторых, промежуточное химическое соединение катализатора с реагирующими веществами должно быть менее прочным, чем конечные продукты реакции, и, соответственно, стандартное изменение изобарного потенциала при образовании промежуточного соединения должно быть менее отрицательным, чем при образовании конечных соединений. Если твердое вещество дает очень прочное соединение с реагентами, то оно покроет поверхность твердого вещества и не будет далее реагировать. Например, благороднме металлы являются катализаторами окислительных процессов потому, что о( разуют с кислородом менее прочные окислы, чем другие металлы. Окислы, хлориды и сульфиды металлов являются катализаторами процессов окисления, хлорирования и т. п. из-за способности образовывать непрочные поверхностные соединения с кислородом, хлором и другими реагентами, [c.461]

    Изменение изобарного потенциала при образовании промежуточного соединения с катализатором можно регулировать введением в катализатор различных добавок. Например, если добавка дает с металлом (катализатором) твердый раствор (сплав), то, меняя состав этого твердого раствора, мoлtнo постепенно менять его термодинамические свойства и энергетические свойства поверхностных соединений. [c.462]

    Нормальной эволюции наших представлений о катализе, теорий каталитических процессов, выводов и обобщений, несмотря на огромное количество исследований по генезису, активности, активации и отравлению катализаторов, сильно мешает отсутствие единого взгляда. Разные авторы подходили и подходят к разрешению сложных вопросов гетерогенного катализа и поведения поверхностей в рамках субъективно выбранных ими условий. В силу этого многие исслецов ния дают разноречивые результаты. Лишь в последнее время вырабатывается единое мнение, что теоретические исследования в области катализа необходимо вести в стандартизованных условиях, учитывая такие параметры, как величина удельной поверхности, удельная каталитическая активность веществ разного состава, являющихся катализаторами, всестороннее изучение свойств поверхностных соединений химическими, физическими, оптическими и другими методами. [c.168]

    Силикагель нашел широкое применение как катализатор реакций дегидратации, гидратации, конденсации, хлорирования углеводородов, гидролиза галогенсодержаш,их углеводородов, изотопного обмена и др. Предполагают, что в этих процессах большую роль играет образование поверхностных соединений. Например, гидролиз хлорпроизводных ароматических углеводородов на силикагеле начинается с поверхностной этерификации  [c.247]


Смотреть страницы где упоминается термин Поверхностные соединения на катализаторе: [c.180]    [c.52]    [c.134]    [c.296]    [c.55]    [c.111]    [c.59]    [c.125]    [c.20]    [c.116]    [c.117]    [c.398]    [c.293]    [c.299]   
Окисление углеводородов на гетерогенных катализаторах (1977) -- [ c.36 , c.55 , c.57 , c.65 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхностна соединения



© 2025 chem21.info Реклама на сайте