Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы как химические соединения

    Общепринято деление процессов отравления на обратимые и необратимые. Однако такое деление является скорее вопросом практического удобства, так как, строго говоря, обратимо всякое адсорбционное отравление. Практически адсорбционное отравление необратимо только в том случае, когда адсорбированный яд образует с катализатором химическое соединение. Хотя понятие обратимости, является относительным, принято [c.56]


    Общепринято деление процессов отравления на обратимые и необратимые. Однако такое деление является скорее вопросом практического удобства, так как, строго говоря, обратимо всякое адсорбционное отравление. Практически адсорбционное отравление необратимо только в том случае, когда адсорбированный яд образует с катализатором химическое соединение. Хотя понятие обратимости является относительным, принято считать отравление обратимым только тогда, когда при обработке поверхности свежим, не содержащим яда реагентом наступает относительно быстрое восстановление активности катализатора. [c.76]

    Изменение свободной энергии процессов взаимодействия в каталитической реакционной системе должно быть менее отрица — те ьно, чем изменение свободной энергии катализируемой реакции, то есть соединения реагирующих веществ с катализатором должны быть термодинамически менее прочными, чем продукты реакции (ес1 и это требование не соблюдается, катализатор быстро выходит из строя, образуя нерегенерируемое прочное химическое соединение). [c.88]

    Поверхностная адсорбция обусловливает механизм действия многих катализаторов. При адсорбции на активных центрах поверхности катализатора в молекулах адсорбируемого вещества происходит разрыв внутримолекулярных связей. Образовавшиеся при этом атомы легко взаимодействуют с другим адсорбированным на катализаторе веществом либо с веществом прилегающей фазы, образуя новое химическое соединение, [c.87]

    Фундаментом прогнозирования активности, селективности и других специфических свойств катализатора должна стать детальная микроскопическая теория гетерогенного катализа, опирающаяся на современные представления квантовой химии и теории твердого тела. Описывая элементарные акты реакций и превращений вещества на поверхности реального катализатора, такая теория в принципе дает возможность не только в полной мере понять механизм, кинетику и термодинамику катализа, но и предсказать каталитическую способность того или иного металла, полупроводника, диэлектрика в конкретной химической реакции. Однако незавершенность теорий катализа не позволяет однозначно предсказывать оптимальный состав промышленных катализаторов и другие их характеристики для действующих и проектируемых производств. До сих пор решение проблемы подбора катализаторов опирается в значительной мере на эмпирические подходы, сопряженные с большими затратами рутинных форм труда. Так, в поисках первого катализатора для синтеза аммиака было исследовано около 20 тыс. различных веществ [1, 2]. В 1973 г. число известных органических соединений оценивалось в 6 млн. Ежегодно только в нашей стране синтезируется более 40 тыс. новых химических соединений. Таким образом, разработка научно обоснованных целенаправленных стратегий поиска катализаторов представляет актуальную проблему современного катализа. Актуальность проблемы подтверждается еще и тем, что коло 90% промышленных химических и нефтехимических производств ведется с применением катализаторов. [c.56]


    Классификация катализаторов. Основными технологическими операциями в производстве гетерогенных катализаторов различных типов являются осаждение, пропитка, фильтрация, промывка осадка, сушка, прокалка, формовка. Наиболее распространены из них две 1) осаждение активной части катализатора в виде кристаллического осадка или геля при взаимодействии водных растворов двух или нескольких химических соединений 2) пропитка каталитически неактивного твердого вещества — носителя — раствором (обычно водным) активных соединений. Для получения катализаторов применяют также и другие, специальные способы, например, термическое разложение соединений, выщелачивание растворимых частей сплавов или природных материалов и др. [c.176]

    Рассмотрение взаимодействия компонентов тяжелого нефтяного сырья с водородом показывает, что все виды гетеросоединений и вое группы углеводородов могут подвергаться глубоким химическим превращениям в процессе каталитической переработки под давлением водорода. При переработке различных видов сырья глубина превращения каждого из компонентов в значительной мере зависит от состава сырья, т. е. от присутствия в зоне реакции других компонентов. Взаимное влияние присутствующих в сырье соединений связано с их различной способностью адсорбироваться на поверхности катализатора. Некоторые соединения, например серо- и азотсодержащие, ароматические углеводороды (особенно конденсированные), обладают повышенной адсорбционной способностью. При этом их устойчивость в условиях реакции и скорость взаимодействия с водородом весьма различны. В результате наиболее устойчивые и медленно реагирующие соединения с повышенной адсорбционной способностью могут блокировать поверхность катализатора и препятствовать превращениям других компонентов сырья. Глубина превращения компонентов сырья и направление основных реакций определяются условиями процесса и видом катализатора. [c.303]

    Технологические отказы — это отказы, обусловленные нарушением норм технологического режима ХТП, неисправностью основного технологического оборудования, нарушением последовательности выполнения технологических операций преобразования вещества и энергии изменением состава сырья плохим перемешиванием перерабатываемых веществ образованием взрывоопасных химических соединений образованием осадка отложением солей адгезией веществ вихреобразованием перегревом, старением катализаторов и т. п. [c.17]

    Расчеты химических равновесий. Изобарный потенциал образования химических соединений. Возможность в большом числе случаев определить равновесие в интересующей нас химической реакции чисто расчетным путем, не прибегая к дорогостоящим и длительным экспериментам, является очень ценным достижением современной химической термодинамики. Это избавляет от поисков катализаторов в тех случаях, когда расчет показывает, что положение равновесия неблагоприятно для проведения реакций в данных условиях, и позволяет определить условия, в которых реакция может протекать с нужным результатом. [c.281]

    Катализатор вступает в химическое взаимодействие с одним или обоими реагирующими веществами, образуя при этом промежуточное соединение (АХ) и входя в состав активированного комплекса. После каждого элементарного химического акта он регенерируется и может вступать во взаимодействие с новыми молекулами реагентов. Таким образом, катализатор направляет химическую реакцию по принципиально новому пути, который отличается от некаталитического числом и природой промежуточных соединений, составом и строением переходного комплекса. Природа сил, вызывающих взаимодействие катализатора и реагентов, та же, что и для обычных химических соединений. Это прежде всего ковалентная связь, донорно-акцеп-торное и кулоновское взаимодействие, водородная связь. Для возникновения химической связи требуется определенное соответствие молекулярных орбиталей реагирующих молекул и катализатора до энергии и симметрии, поэтому катализаторы обладают свойством ус- [c.617]

    Каталитические реакции разделяются на два основных класса гомогенные и гетерогенные. Гетерогенным катализатором является химическое соединение, нерастворимое в реакционной среде. Катализатор может быть индивидуальным, смешанным с другими катализаторами или нанесенным на инертный носитель. Распространенные гетерогенные катализаторы — металлы и их оксиды. Преимущества гетерогенных катализаторов заключаются в их низкой стоимости, простоте регенерации и пригодности к использованию в реакторах как периодического, так и проточного типа. К недостаткам этих катализаторов относятся обычно невысокая специфичность действия и во многих случаях большие затраты энергии на обогрев реакторов и создание повышенного давления. [c.35]


    В этой главе автор стремится помочь исследователю в выборе катализатора для нужного превращения. Объем литературы по каталитическим реакциям огромен. В разных странах издается более восьми журналов по катализу, все чаще публикуются многочисленные книги и обзорные статьи. Поэтому очевидно, что для описания каталитических процессов необходимо ввести некоторые ограничения. В данной главе сделан обзор сорока гомогенных и гетерогенных катализаторов. По мнению автора, эти катализаторы чаще всего встречаются в литературе, наиболее полезны и активны в отношении разнообразных каталитических реакций. В обзоре использована литература за период с 1979 до конца 1981 г. Катализаторы большинства реакций, приведенных здесь, являются индивидуальными химическими соединениями. Многие исследователи указывают специфические катализаторы для каждой реакции. Иногда катализатор может быть сложной смесью нескольких соединений. Классифицирование таких систем затруднительно, и в данной главе этого старались избегать. В наибольшей степени это проявляется при анализе патентной литературы и чаще всего для гетерогенных катализаторов. [c.36]

    Теория промежуточных соединений была одним из первых научных объяснений явления катализа и до сих пор служит основой современных представлений о нем [11]. Схематично эта теория заключается в том, что медленная реакция между исходными реагирующими веществами заменяется двумя или цепью более быстрых реакций с участием катализатора, образующего с исходными веществами промежуточные соединения. В гомогенном катализе промежуточные соединения, как правило, можно обнаружить химическим анализом и даже выделить в чистом виде. При гетерогенном катализе на твердых катализаторах промежуточные соединения являются продуктом активированной (химической) адсорбции, они возникают лишь на поверхности катализатора, не образуют отдельных фаз и не обнаруживаются химическим анализом. [c.61]

    Катализ называют положительным, если скорость реакции увеличивается. Отрицательный катализ означает уменьшение скорости химического превращения вследствие действия катализатора он связан, как правило, с замедленным превращением в продукт промежуточного химического соединения. [c.19]

    Активированная химическая [19] адсорбция одного или нескольких реагирующих компонентов на поверхности катализатора с образованием поверхностного химического соединения (см. рис. 1). [c.28]

    Значительное изменение концентрации исходных веществ (Си, Си) может привести. к замене одного лимитирующего этапа процесса другим. Соответственно изменится и вид кинетического уравнения. Так, в реакциях окисления органических примесей кислородом воздуха при большом избытке кислорода, общая скорость процесса и не зависит от концентрации кислорода, а при недостатке кислорода пропорциональна Со,. Кроме того, значительное изменение концентрации может привести к появлению нового химического соединения реагента с катализатором, дающего отдельную кристаллическую фазу, как правило, каталитически неактивную. Например, при окислении ЗОг в ЗОз на окиснованадиевом [c.38]

    В некоторых случаях отравление катализатора обусловлено сорбционными и химическими процессами одновременно. Так, установлено, что при окислении сернистого ангидрида на ванадиевом катализаторе присутствие соединений мышьяка вызывает как необратимое (химическое), так и обратимое (сорбционное) отравление. Отравление в целом для этого случая относится к не полностью обратимому, т. е. после исключения яда (соединения мышьяка) из реакционной смеси активность катализатора восстанавливается лишь частично [36, 38, 42]. [c.67]

    У всех катализаторов этого типа на одной из начальных стадий производства компоненты механически смешивают друг с другом. В процессе приготовления катализатора возможно образование твердых растворов, химических соединений, многофазных систем. Различают сухой и мокрый способ смешения [3, 20, 75, 106]. [c.150]

    Катализаторы основного типа. В присутствии основных катализаторов наблюдаются процессы г< с-транс-изомеризации и миграции двойной связи. Скелетная изомеризация не наблюдается. Типичные катализаторы щелочные металлы (диспергированные и на носителях), химические соединения щелочных металлов (гидриды, фториды, азиды), металлорганические соединения. Для подобных катализаторов характерна высокая селективность реакций изомеризации. [c.81]

    В формуле изобретения вещество может характеризоваться входящими в его состав ингредиентами, их количественным соотношением (для растворов, сплавов, катализаторов, смесей и т. д.) новой структурой одного из ингредиентов, без изменения качественного и количественного состава или с одновременным их изменением качественным (атомы определенных элементов) и количественным (число атомов каждого элемента) составами, химической связью между атомами и взаимным расположением атомов в молекуле, выраженным посредством структурной формулы молекулы химического соединения. [c.565]

    Международная классификация изобретения (МКИ) была разработана Комиссией экспертов при Европейском совете для классификаций изобретений в 1966 г. и утверждена 1 сентября 1968 г. МКИ построена на основе функционально-отраслевого принципа деления понятий. По МКИ индексируются продукты производства (изделия), способы их производства и устройства, средства й материалы, необходимые для осуществления данных способов. Слова продукт , процесс или способ , устройство понимаются при этом в самом широком смысле. Так, под продуктами понимают химические соединения, катализаторы, ткани, машины и т. д., под процессом — сепарацию, алкилирование,риформинг, транспортировку. центрифугирование, передачу энергии и т. п. [c.569]

    Отравлением катализатора называется частичная или полная потеря его активности под воздействием незначительного количества некоторых веществ —контактных ядов. Контактные яды образуют с активированными центрами катализатора поверхностные химические соединения и блокируют их, снижая активность катализатора. Для каждой группы катализаторов существуют определенные виды контактных ядов. [c.132]

    В общем случае скорость химической реакции зависит от времени. Решающее влияние на нее оказывают концентрации реагирующих веществ, температура и катализаторы. Скорость реакции характеризуется количеством вещества, вступающего в реакцию в единицу времени. Такое определение не является точным, поскольку в реакции участвует несколько химических соединений исходные, промежуточные вещества и продукты реакции. Поэтому в химической кинетике принято говорить не о скорости химической реакции вообще, а о скорости по некоторому компоненту. [c.310]

    Различают гомогенный и гетерогенный катализ. При гомогенном катализе реагирующие вещества и катализатор находятся в одной фазе (в растворе или в смеси газов). При гетерогенном катализе катализатор находится в другой фазе и Химическая реакция идет на поверхности фазы, образуемой катализатором и реагирующими веществами, причем исходные вещества на поверхности катализатора участвуют в образовании активного комплекса или неустойчивого химического соединения с катализатором. [c.405]

    Во-первых, прежде всего из числа веществ, выбираемых в качестве катализатора для данной реакции, нужно исключить твердые ве[цества, которые не могут образовывать поверхностные химические соединения с реагирующими веществами. При этом нужно учесть, что поверхностные соединения могут по своему составу отличаться от объемных фазовых соединений. Так, например, окись меди может на своей поверхности хемосорбировать кислород с образованием поверхностных соединений типа растворов кислорода в окиси меди с выделением значительного количества" тепла. [c.461]

    Окислительно — восстановительные реакции. Из двух перечисленных выше типов реакций в гетерогенном катализе наиболее изучены окислительно — восстановительные. Они широко использовались как модельные реакции при разработке многих частных теорий катализа (промежуточных химических соединений Сабатье и В.Н. Ипатьева, мультиплетной теории A.A. Баландина, активных ансамблей Н.И. Кобозева, неоднородной поверхности Р.З. Рогин — ского, химической концепции катализа Г.К. Борескова и др.) и в особе нности при решении центральной проблемы в гетерогенном ката изе — проблемы предвидения каталитического действия. Успешное ее решение позволит создать научную основу подбора оптимальных катализаторов и разработать единую теорию катализа, обла/,,ающую главным достоинством — способностью предсказывать, а не только удовлетворительно объяснять наблюдаемые от — делььые факты. [c.159]

    Приведенные выше краткие сведения о входящих в состав нефтяных остатков химических соединениях, свидетельствует о крайней сложности их химического состава. Наличие широкой гаммы углеводородов различных гомологических рядов, разнообразный качественный и количественный состав гетероатомных соединений с широким диапазоном изменения физико-химических свойств, позволяет отнести нефтяные остатки к особому классу нефтяных дисперсных систем. Исходя из того, что основные химические реакщш каталитического гидрооблагораживання осуществляются на активной поверхности полидисперсных катализаторов с развитой структурой пор, наличие сведений лишь о компонентном составе сырья недостаточно. Эффективность процесса, который в общей форме может быть представлен, как результат взаимодействия двух дисперсных систем сырье — катализатор, зависит от эффективной диффузии молекул к активным центрам и в целом определяется тем, насколько эффективно используется вся активная поверхность катализатора. [c.21]

    Достижения биогехнологии позволяют в принципе превратить солнечную энергию, запасенную в биомассе растений, в исходное сырье для химической промышленности. Надо еще учесть, что в настоящее время мы находимся в самом начале развития этой области науки и техники. Тем не менее уже имеются примеры успешного использования ферментов (биохимических катализаторов с высокой избирательностью действия) для получения ряда веществ. Сейчас методами биотехнологии в широких масштабах получают шесть важных химических соединений, включая этанол и уксусную кислоту. Они, конечно, сейчас болс е дороги, чем получаемые из нефти. Но со временем цена нефти растет, а биотехнологические способы становятся более конкурентоспособными. Весьма вероятно, в недалеком будущем основой большой химии будут нефть, уголь и биомасса. Конкретный вклад каждого из источников будет опред, 1яться экономической ситуацией в каждой конкретной стране. [c.229]

    Межфазным катализом (МФК) называют ускорение реакций между химическими соединениями, находящимися в различных фазах. Как правило, это реакции между солями, растворенными в воде или присутствующими в твердом состоянии, с одной стороны, и веществами, растворенными в органической фазе, — с другой. В отсутствие катализатора такие реакции обычно протекают медленно и неэффективны или не происходят вообще. Традиционная методика проведения реакций включает растворение реагентов в гомогенной среде. Если используется гидроксилсодержащий растворитель, реакция может замедляться из-за сильной сольватации аниона. Побочные реакции с растворителем иногда снижают скорость еще больше. Часто превосходные результаты дает применение полярных апротон-ных растворителей. Но они обычно дороги, трудно отделяются после реакции и могут вести к возникновению экологических проблем при широкомасштабном использовании. Кроме того, в некоторых случаях, например при О- или С-алкилировании амбидентных анионов, полярные апротонные растворители могут в результате преобладающего образования нежелательных продуктов в заметной степени подавлять, а не промотировать реакцию. [c.12]

    В основе современных представлений о каталитическом акте лежат положения о том, что первичной стадией катализа является хе-мосорбционный процесс, в результате которого образуются химические соединения молекулы субстрата с поверхностью катализатора, но без образования новой фазы. При этом предполагается, что молекулы субстрата связываются с локальными участками поверхности катализатора активными центрами. [c.655]

    Следует отметить, что существует ряд процессов с применением многофункциональных катализаторов, для которых полезно отравление чрезмерно активных центров или центров одного рода. Это позволяет ингибировать одни реакции и тем самым увеличить выход продуктов других реакций. Блокирование - процесс дезактивации катализаторов, природа которого носит либо физический, либо химически й характер. Вероятно, чаще всего имеет место дезактивация катализаторов путем блокировки, а не путем его отравлен1ля. Наиболее типичным процессом, приводящим к блокировке актив1яых центров является отложение на катализаторе углеродсодержащих соединений (кокса). Эти соединения образуются на большинстве катализаторов, которые используются во вторичных процессах переработки нефтяных фракци Й или в процессах органического катализа. [c.93]

    Активность катализатора не является непрерывной функцией концентраций реагентов и но сильное изменение или может привести к замене одного лимитирующего этана процесса другим соответственно изменится и вид кинетического уравнения. Так, в реакциях окисления органических примесей к воздуху при незначительных концентрациях их, т. е. при громадном избытке кислорода, общая скорость процесса и не зависит от концентрации Од, а при недостатке кислорода и пропорциональна Со - Кроме того, значительное изменение может привести к появлению нового химического соединения реагента с катализатором, дающего отдельную кристаллическую фазу, как правило, каталитически неактивную. Например, нри окислении 80 2 в 80зна окиснованадиевом катализаторе сильное повышение концентрации 80 з приводит к образованию кристаллов сульфата вападила 0804, причем энергия активации реакцрш окисления 802 возрастает более, чем в 2 раза. [c.86]

    Стабильность работы при значительных изменениях концентрации реагирующих компонентов газовой смеси, т. е. сохранение активности близкой к начальной в течение длительного времени. Это требование иногда не выполняется вследствие того, что при значительных изменениях концентрации и температуры образуются химические соединения компонентов катализатора с исходными веществами или продуктами, которые могут улетучираться или экранировать катализатор. В ряде случаев активность катализатора в процессе работы несколько возрастает под действием среды вследствие самопроизвольной оптимизации, состава или структуры. [c.125]

    Взаимодействие азота с водородом на поверхности катализатора. При этом азот принимает электроны от катализатора, а водород отдает электроны катализатору, пополняя их убыль. В результате последовательно образуются поверхностные химические соединения имнд NH, амид МН2 и аммиак NH3. [c.89]

    Одним из катализаторов, подробно описанных в литературе [I] и позднее детально изученных, является медный катализатор на окиси хрома. Установлено, что лри использовании этого катализатора карбонильные соединения гладко подвергаются гидрогено-лизу, особенно в этаноле, диоксане при 180 °С [43]. Исследование медных катализаторов на различных носителях ( uO/MgO- --ЬРегОз СиО/СаРг Си/СггОз и Ag u/ r20з Си/кизельгур и др.) проводилось в различных странах [34, 44], однако во всех выполненных работах указывалось лишь на способность перечисленных Катализаторов вести процесс гидрогеиолиза без изучения степени активности, селективности, стабильности и физико-химических свойств катализаторов. В последнее время особый интерес вызвал катализатор Си—СеОг/кизельгур [45]. [c.46]

    Происходит это в основном по двум причинам. Во-первых, меры по снижению загрязненности воздушного бассейна больших городов включают и удаление из отработавших автомобильных газов токсичные продукты ropания свинцовых антидетонаторов. Во-вторых, во многих больших городах мира уже введены довольно жесткие нормы на содержание окиси углерода в отработавших газах и в последующие годы будут ужесточаться. Эти нормы могут быть соблюдены только при установке на автомобилях дожигателей, в которых окись углерода дожигается в углекислый газ в присутствии катализаторов. Наиболее эффективным катализатором оказалась сложная смесь химических соединений, содержащая платину и некоторые другие элементы. Но продукты сгорания свинца отравляют катализатор в дожигателе, резко сокращая срок его службы. Все попытки найти катализатор, не чувствительный к продуктам сгорания свинца, пока положительных результатов не дали, поэтому переход на неэтилированные бензины рассматривается как кардинальный способ снижения токсичности отработавших газов, [c.27]


Смотреть страницы где упоминается термин Катализаторы как химические соединения: [c.398]    [c.165]    [c.55]    [c.242]    [c.684]    [c.461]    [c.134]    [c.654]    [c.88]    [c.18]    [c.28]    [c.107]    [c.323]    [c.130]   
Смотреть главы в:

Промышленные каталитические процессы и эффективные катализаторы -> Катализаторы как химические соединения




ПОИСК





Смотрите так же термины и статьи:

Какие химические соединения можно получить, имея в распоряжении циклогексан, азотную и серную кислоты, используя любые условия и катализаторы. Напишите уравнения соответствующих химических реакций

Химическое соединение



© 2025 chem21.info Реклама на сайте