Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гептан окисление

Рис. 2. Зависимость эффективной константы скорости реакции окисления спирта 9 диоксидом хлора от концентрации спирта при различных температурах (гептан, 1-29, 2-42, 3-50, 4-60°С) Рис. 2. Зависимость <a href="/info/332814">эффективной константы скорости реакции</a> <a href="/info/11642">окисления спирта</a> 9 <a href="/info/70278">диоксидом хлора</a> от <a href="/info/122171">концентрации спирта</a> при <a href="/info/133412">различных температурах</a> (гептан, 1-29, 2-42, 3-50, 4-60°С)

    Марголис и Тодес [35] установили, что катализаторы типа смеси окиси хрома и шпинеля, нанесенные на асбест, вызывают окисление таких углеводородов, как пентан и гептан, до двуокиси углерода и воды. Под влиянием таких катализаторов метилэтилкетон и бутиральдегид, содержащиеся в продуктах неполного парофазного окисления этих углеводородов, должны окисляться в органические кислоты. Поэтому можно считать, что эти соединения не образуются в качестве промежуточных продуктов в процессе поверхностного горения. [c.321]

    Активирование алюминия в кавитационной, шаровой или вибрационной мельнице. Активирование алюминия этим методом целесообразно проводить в атмосфере -азота и в среде 5%-ного раствора триэтилалюминия в н-гептане, так как при этом суспензия алюминия легко транспортируется по трубопроводам, а активированный алюминий предохраняется от окисления кислородом воздуха при транспортировании и при хранении. Кроме того, мокрый помол менее взрывоопасен, чем сухой. Активирование алюминиевого порошка (или пудры) в мельнице следует вести в течение 20—30 ч. Наибольшей активностью обладает алюминий, измельченный в вибрационной мельнице. [c.276]

    Окисление спиртов диоксидом хлора (/) изучено на примере пропан-2-ола (2), 2-метилпропан-1-ола (5), бутан-1-ола 4), бутан-2-ола (5), 3-метилпентан-1-ола (6), гептан-4-ола (7), декан-2-ола 8), циклогексанола (9), борнеола 10). [c.5]

    Вместе с Торпе Шорлеммер исследовал хлорирование н-гептана [14] в тех же условиях, что и раньше. Но в дополнение ко всему он столкнулся еще с гептенами, образующимися при обработке хлор-гептанов спиртовой щелочью, и попытался выяснить их состав окислением смесью хромовой и серной кислот. Свои выводы Шорлеммер сформулировал следующим образом  [c.537]

    Дымящая серная кислота. Холодная дымящая серная кислота очень медленно реагирует с и-гексаном, и-гептаном и м-октаном [95], газообразные парафины в значительной степени реагируют при обычных температурах. Это необходимо принимать во внимание при анализе газа с использованием дымящей серной кислоты. При умеренном нагревании дымящая серная кислота действует на парафины, вызывая сильное окисление с образованием двуокиси серы, а также, по-видимому, и незначительное сульфирование их. Кислота, содержащая от 35 до 65% ЗОд, медленно реагирует с н-гексаном, циклогексаном и метилциклогексаном. При этом идет незначительное сульфирование, что было доказано получением сульфонатов бария, но протекают также вторичные реакции, включая окисление, которые еще не выяснены [11, 82]. [c.98]

    По истечении заданного времени окисления, указанного в технических требованиях на испытуемое масло, реакционный сосуд вынимают из бани и охлаждают до 50° С, фиксируют цвет медной пластинки, промывают нормальным гептаном, сушат и взвешивают ее с точностью до 0,0002 г и ловушку с конденсатом с точностью до 0,001 г. [c.24]


    Активационные параметры реакции окисления спиртов 2-10 диоксидом хлора (Т=30 °С, гептан, ошибка эксперимента не превышает 10 %) [c.8]

    Реакционная способность диоксида хлора по отношению к фенолу увеличивается в следующем ряду растворителей 2-метилпропан-1-ол < этанол < 1,4-диоксан < ацетон < ацетонитрил < этилацетат < дихлорметан < гептан < тетрахлорметан. Увеличение основности растворителя В приводит к уменьшению константы скорости реакции окисления фенолов диоксидом хлора lgk = -(0.4 0.08) - (7.4 0.5) 10 В. [c.22]

    Насыщенные углеводороды могут быть опасны в некоторых процессах. Особенно нежелательны они при использовании бензола для производства капролактама и адипиновой кислоты через промежуточное получение циклогексана и циклогек-санона. На стадии окисления циклогексана насыщенные примеси окисляются, образуя кислородсодержащие соединения, вызывающие пожелтение капролактама и ухудшение качества получаемых синтетических волокон. Насыщенные углеводороды не влияют на алкилирование, но могут образовать побочные продукты уже на стадии переработки. Содержание примесей насыщенных углеводородов ограничено только для бензола высшей очистки (н-гептан - не более 0,01 % для продукта высшего и 0,02 % — 1-го сорта, а метилциклогексан и толуол — в сумме, соответственно, не более 0,05 и 0,08%). Косвенньсм показателем является и температура кристаллизации бензола. [c.305]

    Как ВИДНО, жидкие углеводороды (гептан, пентадекан, бензол) в Среде кислорода при а а сгорают полностью. Полнота сгорания твердых углеводородов (парафина, нафталина, антрацена) в этих же условиях не достигает единицы и составляет 95—96%, что, очевидно, является следствием дополнительных затрат тепла на их плавление и испарение. Следует отметить более низкую полноту сгорания ароматических соединений по сравнению с алифатическими соединениями Увеличение полноты сгорания с увеличением а (в области малых значений а) можно объяснить увеличением диффузионного потока окислителя на единицу массы горючего, что до некоторого предела (а ) способствует более полному протеканию процесса и законченности реакций окисления. [c.76]

    Для определения качественного состава углеводородных газов предложено воспользоваться способностью некоторых видов бактерий окислять определенные углеводородные газы. Эти бактерии могут развиваться в атмосфере только определенных углеводородов. Есть бактерии, способные окислять метан, эти же бактерии могут окислять также пентан, гептан и более тяжелые углеводороды, но не окисляют такие углеводороды, как этан и пропан. Некоторые бактерии окисляют этан и более тяжелые углеводороды, но не окисляют метан. В табл. 31 приведены данные о способности этих бактерий к окислению различных углеводородов [30], [c.256]

    Предварительное концентрирование летучих продуктов, масс-спектрометрия [819] Экстракция гептаном. Окисление Л1-хлорнад-бензойной кислотой. Определение непрореагировавшего окислителя ио-дометрически [820]. [c.210]

    Линии I — летучие кислородсодержащие продукты окисления пропана или бутана II — чистый ацетальдегид ///—летучие соединения из установки очистки формальдегида VV — водород V — па установку для очистки формальдегида У/— гептан У//— дренаж VIII — чистый метиловый спирт IX — этиловый, изопропиловый и н-пропиловый спирты. [c.156]

    К- И. Иванов с сотрудниками опубликовали результаты работы, посвященной определению пункта атаки кислорода при окислении парафинов в качестве объекта исследования был выбран н-гептан. Они прищли к выводу, что кислород атакует /3-метиленовую группу и что в качестве первичного продукта окисления получается гидроперекись гептана следующего строения СНзСН(ООН) (СН2)4СНз [121]. [c.587]

    Линии I — неочищенные летучие продукты окисления II — летучие продукты окисления с формальдегидной установки III — ацетальдегпд в сборник IV — формальдегид на очистку V — водород VI — гептан VII — в сборник метанола VIII — отходы  [c.95]

    В ИК-спектрах поглощения продуктов окисления биссульфидов из природных меркаптанов, полученных окислением в уксусной кислоте перекисью водорода, имеется полоса 3200—3600см . Наряду с этим, в спектре имеются полосы сульфоновой (ИЗО и 1300 см ), карбонильной (1720 см ) и мономерно-кислотной (1750, 1420, 1230 см ) групп. Дополнительная промывка раствором соды и водой, хроматографирование на колонке бензолом (или н-гептаном и эфиром) мало меняет вид спектра продуктов окисления. Очевидно, уксусная кислота, как и вода, может частично удерживаться в ассоциатах продуктов окисления. Разветвленное строение алки/.ьных радикалов у биссульфидов из природных меркаптанов усиливает такое удержание молекул кислоты и воды в ассоциатах. [c.66]

    Отмечается [26], что присутствие парафиновых и нафтеновых углеводородов в бензоле нежелательно, если последний используют для синтеза капролактама и адипиновой кислоты. Например, -гептан, пройдя без изменения стадию гидрирования бензола до циклогексана, на стадии окисления превращается в гептанон и другие кислородсодержащие соединения, вызывающие пожелтение капролактама. В синтезе капролактама и адипиновой кислоты через циклогексан отрицательное влияние оказывают также содержащиеся в бензоле примеси метилциклопентана и метилцйкЯо гексана [27, 28]. Фирма 51агп1сагЬоп ограничивает содержание насыщенных углеводородов в бензоле для получения капролактама на уровне 0,02% [27]. [c.119]


    В то время как в цепях жирных кислот окисленный конец служит местом, в котором начинается процесс р-окисленпя, окисление насыщенных углеводородных цепей не может быть инициировано столь легко. Тем не менее ткани нашего организма могут, хотя и очень медленно, вовлекать в метаболизм такие углеводороды, как н-гептан. Некоторые микроорганизмы способны быстро окислять неразветвленные углеводородные цепи проводились попытки подобрать такие штаммы Pseudomonas и дрожжей andida, с помощью которых можно было бы получать питательные белки из нефтяных продуктов [4]. [c.310]

    Кинетику реакции окисления спиртов 2-10 диоксидом хлора изучали спектрофотометрически по расходованию диоксида хлора в гептане при тах = 356 НМ при условии [7]о [КОЩ , где [7]о и [КОЩй - начальные концентрации диоксида хлора и спирта соответственно. Для всех указанных соединений кинетические кривые с высоким коэффициентом корреляции (0.990 0.999) описываются уравнением первого порядка (рис. 1). [c.6]

    Влияние растворителя на реакцию окисления спиртов было изучено на примере 2 в гептане (7), тетрахлоруглероде (77), бензоле (777), 1,4-диоксане IV), хлорбензоле V), этилацетате VI), 1,2-дихлорэтане VII), ацетонитриле VIII). Во всех растворителях кинетическое уравнение реакции имеет вид d[l] [c.9]

    Известно, что парафиновые углеводороды относительно инертны к обычным химическим реагентам, в том числе и к молекулярному кислороду. Так, гомологи метана начинают в заметной степени окисляться лишь при температуре вьпие 250° удлинение цени и повышение молекулярного веса снижает их стабильностт>. При автоокислении н-парафинов окислению подвергается второй от конца цепи атом углерода. Так, Чертков и Башкиров [40] при окислении и-додекана при повышенной температуре в качестве основных продуктов реакции выделили ундециловый спирт и ундецило-вый альдегид. Из продуктов окисления и-тридекана ими выде.лены додециловый спирт и лауриновый альдегид. Кроме того, во всех случаях были выделены метиловый спирт и формальдегид. Окисляя н-гептан при 80° кислородом прп облучении ультрафиолетовыми лучами в течение 120—150 час., Иванов [41] обнаружил в продуктах реакции и идентифицировал гидроперекись /г-гептана с гидро-перекисной группой в положении 2. [c.66]

    Для каталитического окисления могут применяться платиновые катализаторы, приготовленные различным образом платина на угле, платина на окиси алюминия, платиновая чернь. Наблюдаются значительные отклонения в активности катализаторов, полученных одним и тем же способом. Наилучшим растворителем для проведения этой реакции является вода, но в случае необходимости могут быть использованы ацетон, метилэтилкетон, диоксан, гептан и петролейный эфир в бензоле, уксусной кислоте и этилацетате реакция протекает очень медленно. Так как при комнатной температуре скорость окисления слишком низка, реакцию ведут обычно при температурах от 50 до 100° С. Для окисления первичной спиртовой или альдегидной группы в карбоксильную группу оптимальным является интервал pH 7—9, для окисления вторичной гидроксильной группы в карбонильную предпочтительной является слабокислая среда, так как в слабощелочной среде (pH 7,3) происходит дальнейшее окисление первоначально образующихся кетосахаров с разрывом углерод-углерод-ных связей. Так, при окислении 3-бензил- )-арабопиранозида в этих условиях была получена двухосновная кислота XXII  [c.85]

    Окисление 121. С.т. взаимодействует с неактивированными углеводородами, например с бензолом, w-гептаном, а также с толуолом, образуя трмфторацетоксипроизводные, которые легко гидролизуются до соответствующих фенолов или спиртов. Выходы сосд авляют 54+10%. [c.384]

    Состав продуктов окисления ненасыщенных кислот зависит ют условий процесса. В продуктах автоокисления олеиновой кислоты при 100 " С обнаружены пробковая, азелаиновая, гептан- и юктаН 1-карбоновые кислоты, много смолистых окрашенных продуктов и незначительные количества диоксистеариновой и а,р-не-насьпценных кетокислот. При температуре окисления 65 ""С количество смолистых продуктов уменьшается [24]. [c.154]

    Для очистки дитизоната этнлмеркурхлорида от дитизонатов других металлов, избытка дитизона и продуктов его окисления Б. Н. Изотовым рекомендована адсорбционная хроматография на окиси алюминия и хроматография в тонком закрепленном слое силикагеля КСК. Этилмеркурдитизонат обнаруживается на хроматограмме в виде окрашенного в желтый цвет пятна с К —0,56—0,62 (в системе н-гептан-хлороформ-2 5) и — [c.348]

    Влияние кислородсодержащих поверхностных функциональных групп активного угля на адсорбцию из растворов более или менее систематически исследовано только для адсорбции электролитов, т. е. тогда, когда причиной адсорбции являются ионообменные или электрохимические процессы [86, 92, 98, 100, 114— 119]. Гораздо меньше работ посвящено исследованию степени участия поверхностных групп в адсорбции органических соединений — неэлектролитов или слабых электролитов на углеродных сорбентах. А. В. Киселев, Н. В. Ковалева и В. В. Хопина [120] обнаружили, что циклогексан, бензол, толуол и нафталин адсорбируются на окисленных сажах и углях из растворов в гептане сильнее, чем на сажах и углях, освобожденных от окислов прокаливанием при высокой температуре. Увеличение адсорбции они считали следствием взаимодействия л-электронных систем ароматических ядер с сильно протонизированным водородом поверхностных функциональных групп. [c.50]

    Лаундс [186] сообщает, что отгонка с ксилолом может применяться для определения влажности материалов животного и растительного происхождения. Другие летучие продукты при этом также отгоняются, но, по-видимому, остаются в ксилольном слое. Показано, что при анализе цельной крови, плазмы и сыворотки отгонкой с толуолом воспроизводимость результатов достигает —0,2% [206, 207]. (В этих экспериментах был опробован также н-гептан, однако результаты, по-видимому, менее надежны.) Результаты, получаемые при использовании метода дистилляции, во всех случаях были несколько выше, чем при высушивании анализируемых материалов в воздушном сушильном шкафу при 105 °С на 2,3% для цельной крови, на 1,6% для плазмы и на 3,3% для сыворотки. Источник ошибок метода высушивания в воздушном сушильном шкафу — окисление анализируемых образцов кислородом воздуха. [c.287]

    Анализ результатов ингибирующей споообности асфальтенов на модельной реакции инициированного окисления кумола показал /2/, что в соотав асфальтенов входит около 10% высокоэффективных стабилизаторов. Это вполне естественно для асфальтенов, представлящих собой сложную смесь различных фракций, отличающихся по молекулярной массе, содержанию ароматических и гетероатомных структур. Итак установлена возможность выделения из асфальтенов некоторой части с повышенной ингибирующей способностью. С этой целью была проведена селективная экстракция асфальтенов нефти Советского месторождения Томской области последовательно растворителями гептаном, нонаном, диоксаном, ацетоном, бензолом. [c.262]

    Углеводороды могут быть разложены в присзггствии таких соединений, как алкилметаллы, окись этилена и др., в гораздо большей степени, чем когда они разлагаются одни в тех же температурных условиях [17а]. Например, н-гептан и декан разлагаются в присутствии тетраэтилсвинца при 200 — 265° С. Это объясняется, главным образом, тем, что свободные радикалы, образованные при разложении добавляемых соединений, индуцируют расщепление углеводородов. Эта теория кажется правдоподобной, но не единственно возможной для объяснения механизма индуцированного крекинга. Индуцированные реакции—обычное явление при окислении неорганических и органических соединений в растворах, в которых механизм индуцирования реакций не может использовать теорию свободных радикалов. Ингибирующее действие таких соединений, как окислы азота, при разложении парафинов также объясняется с точки зрения теории свободных радикалов и цепных реакций [124Ь]. [c.26]

    О небольшой величине энергии активации обменной реакции 2 говорит и сама возможность образования гидроперекисей при окислении метана, этана и пропана даже при комнатной температуре, при фотохимическом зарождении активных центров (см. рис. 47). С другой стороны, величина, Ёаф холоднопламенного окисления двух таких различных углеводородов, как н. гептан и изооктан (2,2, 4-триметилпентан) не выходит за пределы 36—20 ккал, что значительно меньше теплоты реакции термического зарождения КН -Ь О2 К -Н НО2 ( АН 40—52 ккал для алканов различного строения). Таким образом, остается принять в качестве лимитирующей реакцию разветвления 3, для которой, по аналогии с распадом диалкильных перекисей, значение АН заключено в пределах 32—37 ккал. Вопрос о зависимости холоднопламепного процесса от строения углеводородов будет рассмотрен отдельно. [c.83]


Смотреть страницы где упоминается термин Гептан окисление: [c.70]    [c.70]    [c.314]    [c.198]    [c.199]    [c.106]    [c.151]    [c.303]    [c.331]    [c.78]    [c.428]    [c.135]    [c.143]    [c.151]    [c.63]   
Микробиологическое окисление (1976) -- [ c.44 , c.151 ]




ПОИСК





Смотрите так же термины и статьи:

Гептан

Гептанал



© 2025 chem21.info Реклама на сайте