Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изотопный обмен энергия активации реакции

    Превращение по бимолекулярному замещению Зе , по-видимому, маловероятно. Это подтверждается, во-первых, экспериментальными данными по определению 7 для [1-2Н1] дифенилметана в [1—6-1 С] бензоле, а также [1—12- С] дифенилметана в Шо-бензоле. В обоих случаях отношение лежит в пределах 1,0—1,12, т. е. кинетический изотопный эффект отсутствует, а если он и есть, то является вторичным. Показано также, что обмен дейтерия между Нб-этилбензолом и дифенилметаном в условиях реакции не имеет места. Во-вторых, энергия активации, найденная при условии а=1 и р = 1, не харак- [c.214]


    Для обменных реакций с участием групп 8Н, как указывалось, характерно относительно медленное протекание процесса Н-обмена и большие величины энергии активации. Высокое значение АЕа (см. табл. 1) трудно согласовать с предположением, что лимитирующей стадией является образование промежуточного комплекса с Н-связью, ибо этот процесс характеризуется очень низким активационным барьером б. Для подобных систем был сделан вывод [24, 25], что Н-обмен лимитируется актом кооперативного перехода протонов в промежуточном комплексе. Аналогичное заключение сделано в [42] для системы спирт—карбоновая кислота, что подтверждено в этой работе довольно сильным кинетическим изотопным эффектом (/сн/А 1) = 8). Именно в случаях, когда лимитирующей стадией является переход протона, следует ожидать значительного уменьшения скорости реакции при замене протона на дейтон [44]. [c.283]

    Для установления подвижности кислорода в решетке оксида определяют скорости и энергии активации реакций обмена кислорода твердого тела с кислородом, находящимся в газовой фазе (гетерогенный изотопный обмен). При этом, если оксиды содержат в своем составе обычный кислород ( 0), то в газовой фазе используют кислород, обогащенный более тяжелым изотопом ( 0). Можно, и наоборот, иметь меченые оксиды, а в газовой фазе использовать обычный кислород. [c.80]

    Замещение в соединении одного изотопа другим до некоторой степени изменяет свойства этого соединения. Меняются скорости химических реакций. На энергию активации реакции это замещение влияет таким образом, что образцы, содержапще более тяжелый изотоп, обычно реагируют более медленно. Также и константы равновесия обменных реакций отличаются от единицы. Их вычисляют с помощью статистической механики, если, конечно, известны основные частоты колебаний реагирующих веществ. Если колебательные частоты пе известны из спектроскопических измерений, то их вычисляют, предположив, что силовые постоянные при изотопном обмене не изменяются. Константа равновесия реакции [c.715]

    Простейший случай такой реакции — обмен молекулами растворителя между сольватированным катионом металла и массой растворителя. Наиболее непосредственные измерения скоростей таких реакций — это данные Таубе по изотопному обмену они указывают на измеримые скорости обмена и значительные энергии активации для иона А1 + в воде и Со + и N1 + в метаноле [c.276]


    Обоснованность такой концепции подтверждается квантово-химическими расчётами, которые показывают, что при осуществлении обмена водорода на тритий валентные углы и длины С-Н-связей при углеродном атоме, у которого происходит изотопный обмен, почти полностью совпадают с соответствующими параметрами иона СН . Кроме того, полученные данные показали, что за счёт дополнительного взаимодействия атомов водорода происходит понижение энергии активации изотопного обмена, т. е. переходное состояние этой реакции дополнительно стабилизировано за счёт образования связи между обменивающимися ионами водорода  [c.518]

    Изотопный обмен кислорода протекает при значительно более высоких температурах, чем реакции окисления На и СО. Энергии активации обмена О2 выше энергии активации окисления. Закономерности же подбора катализаторов (относительный порядок активности окислов) одинаковы, как можно было видеть из сопоставления рис. 59—62 (для реакций окисления) и рис. 65, 66 (для кислородного [c.152]

    Фотохимическая активация значительно превосходит тепловую, так как находящаяся в растворе молекула при поглощении одного фотона получает такое количество энергии, которое тепловым путем ей сообщить практически нельзя. Возможности ускорения медленно протекающих реакций фотохимической активацией очень велики. Установлено, что изотопный обмен между урапом(1У) и ура-ном(У1) при освещении раствора простой лампой накаливания мощностью 300 вт ускоряется примерно в 20 раз [57]. К сожалению, фотохимическое стимулирование медленно протекающих реакций используется пока в масштабах, далеко не соответствующих перспективности этого метода. [c.135]

    При 600—700°С обмен между водородом и дейтерием Нг -(- Ог -> 2НО также идет как гомогенная газовая реакция полуторного порядка с энергией активации в 7,4 ккал Несомненно, что этот изотопный обмен является процессом замещения, включающим разрыв связи Н — Н. [c.99]

    Электронный изотопный обмен между подобными ионами предполагает не только переход электронов, но и перестройку сольватных оболочек. Так как перестройка сольватных оболочек связана с пространственным перемещением молекул растворителя, то она не успевает произойти за время электронного перехода, вследствие чего этот переход делается невозможным без предварительной затраты энергии. Так объясняется наличие энергии активации и медленность изотопного обмена по тоннельному механизму для некоторых реакций между простыми ионами. [c.195]

    Поскольку экспериментальная энергия активации для реакции обмена равна 79 ккал/моль, эта величина может быть барьером для образования тетраэдрической N4. Более вероятной является возможность образования скошенной конфигурации N 4. Колебательное возбуждение может помочь ее образованию, поскольку скошенная форма N4 представляет собой просто колебательно-возбужденную плоскую молекулу N4, как на схеме (68). Хорошо известно из кинетической теории мономолекулярных реакций, что на высоких уровнях возбуждения происходит быстрый обмен колебательной энергией между колебаниями различных типов. Аналогичные аргументы могут быть использованы для изотопного обмена в окиси углерода. [c.80]

    Найдено, что в таких реакциях обмена могут принимать участие только алкильные атомы водорода. Гидроксильные атомы водорода спиртов и карбоновых кислот не обмениваются. Не подвержены обмену также атомы водорода ароматического ядра и в а-положении к нему. Показано, что реакция как в слу чае углеводородов, так и в случае распада перекиси ацетила протекает по молекулярному, а не по радикальному или ионному механизму. Квантовый выход порядка единицы (при учете всех возможных путей реакции). Вероятность обмена данного атома водорода частично зависит от его радикальной реакционной способности. Изотопный эффект мал. Варьирование сенсибилизаторов и длины волны света позволяет оценить энергию активации бимолекулярной реакции для тех случаев, когда термическая реакция идет цепным путем (для водородного обмена в углеводородах 70 ккал/моль). [c.243]

    Отсутствие изотопного эффекта может объясняться и быстрым обменом между атомами дейтерия в ингибиторе и атомами водорода, присутствующего в следах влаги субстрата или в гидроперекисях [290, 534]. Отсутствие изотопного эффекта не исключает реакции 19), если энергия активации этой реакции незначительна [60]. Кроме того, кинетическая обработка схемы ингибированного окисления, где обрыв цени происходит в реакции отрыва водорода от молекулы антиоксиданта, также приводит к аналогичной уравнению (ХУП) зависимости, если учесть побочные реакции ингибиторного радикала [58]. [c.86]

    Данные, иллюстрируемые рис. 25, дают сведения о неоднородности поверхности, поскольку речь идет об абсолютной скорости реакции обмена. Имеется серьезное основание предположить, что при всех температурах опытов по изотопному обмену достигалось почти полное покрытие адсорбированным водородом всех участков субструктуры. Если предположить, что механизм реакции обмена одинаков для всех участков поверхности, то удельные константы скорости, не зависящие от температуры (на единицу поверхности), должны быть равны на таких участках, и неоднородность будет исключительно обусловлена различием величии энергии активации. Тщательный анализ экспериментальных данных показал, что распределение участков поверхности по энергиям активации может быть с достаточным приближением выражено функцией Гаусса [c.204]


    Изотопный обмен атомов дейтерия тяжелой воды с атомами водорода растворенного в ней аммиака протекает практически мгновенно. В растворенных солях аммония обмен происходит в тех же связях N—Н, и аналогично предполагали, что он идет столь же быстро, как в аммиаке. Однако предложенный механизм [11 обменных реакций водорода в растворе приводит к выводам, противоречащим этому предположению. В молекуле аммиака электронный октет вокруг атома азота содержит свободную электронную пару, к которой дейтерон может присоединиться с одновременным отщеплением протона от другой электронной пары, без преодоления значительного энергетического барьера. В ионе аммония нет такой свободной электронной пары, и присоединение дейтерона возможно лишь с одновременным отрывом протона от той же связи, что требует значительной энергии активации [c.46]

    Значительно большее различие изотопное замещение вызывает иногда в скоростях реакций. Дело в том, что в активированном комплексе связь рассматриваемого атома может быть настолько ослаблена, что ее колебательная энергия мала и разность нулевых уровней для двух изотопов также невелика. В таких случаях почти вся начальная разность нулевых энергий может проявиться как различие в энергиях активации. Такое различие может уменьшить скорость реакции в дейтерозамещенной молекуле примерно на порядок величины. С некоторыми частными примерами таких кинетических изотопных эффектов можно познакомиться при сопоставлении предсказанных констант скоростей реакций, при которых происходит разрыв связей между водородом или дейтерием и углеродом, азотом и кислородом С — Н/С — О 6,9 N — Н/М — О 8,5 О — Н/0 — О 10,6. Следует отметить, что в отдельных случаях наблюдались еще большие кинетические изотопные эффекты. Одним из таких случаев является обмен атома Н в следующей реагирующей радикальной системе  [c.171]

    Вестон и Бигельейзен [79] нашли, что в отсутствие катализатора изотопный обмен водорода между фосфином и тяжелой водой происходит крайне медленно. Его катализируют кислоты и основания. В области pH от 3,4 до 5,0 константа скорости является линейной функцией от концентрации НзО . В этом интервале pH константа изменяется в пределах от 12,9-Ю до 0,4-10" сек при 27°. При pH, равном 10,0—11,9, константа скорости обменной реакции изменяется пропорционально концентрации ионов гидроксила (А-10 сек от 0,6 до 22,6). Энергия активации реакции, катализируемой кислотой или щелочью, равна 17,6 ккал молъ. [c.96]

    В кЕяестве варианта метода И. и. для выяснения механизма нек-рых реакций и строения химич. соединений может быть использован изотопный обмен. Снособность к изотопному обмену определяется строением молекул и природой заместителей, реакцией среды, наличием сольватации и ассоциации, окислительно-восстановительных процессов, катализаторов и т, д. Но зависимости константы скорости изотопного обмена от темп-ры определяют энергию активации реакции обмена, что позволяет судить о характере химич. связи, ее реакционной способности и о подвижности атомов и групп. [c.93]

    Я. Повакова (Прага, ЧССР). В связи с докладом 33 сделаем одно замечание формального характера. Нам кажется, что при сравнении энергий активации реакций окислительного катализа и изотопного обмена было бы правильней говорить о гетерообмеяе. В докладе было показано, что энергию активации гомомолекулярного обмена можн использовать для поисков корреляций только в случае, если обмен происходит с двумя атомами кислорода решетки, что, в сущности, соответствует гетерообмену. [c.380]

    Изменение температуры активации показывает, что активность катализатора в реакции изотопного обмена строго зависит от температуры его предварительной обработки (рис. 4). На образцах окиси алюминия, дегидратированных нри 400° С, обмен дейтерия с водородом пропана идет очень медленно при комнатной температуре ( 20° С), и даже при температуре реакции 200° С концентрация легкого углеводорода уменьшается меньше чем на 7% в час. На образцах катализатора, активированных при 475° С обмен при комнатной температуре сопровождается уменьшением количества легкого углеводорода на 6,4% в час. Максимальная активность в реакции изотопного обмена была на окиси алюминия, прокаленной при 540° С. Для этих образцов при 20° С значение составило 4,9 ii в минуту на грамм, что соответствовало 0,03% в минуту на 1 л1".Для образцов окиси алюминия, дегидратированных нри 475—900° С, энергия активации реакции обмена (рассчитана из графика в аррениусовских координатах) равна 8,7 + ккал молъ. Поэтому можно предположить, что реакция обмена протекает по одному и тому же механизму на всех активных образцах окиси алюминия. [c.366]

    На окислах с равновесным содержанием кислорода простейшая каталитическая реакция, какой является изотопный обмен в молекулярном кислороде, протекает с участием кислорода окисла. Скорости гомомолекулярного и гетерообмена для окислов с равновесным содержанием кислорода совпадают. Для окислов Т102, УгОз, СггОз, 2пО, РегОз, СиО, N 0, МпОг, С03О4 каталитическая активность в реакции гомомолекулярного обмена изменяется в весьма широком интервале (на 8 порядков), а энергии активации различаются более чем на 120 кДж/моль. Таким образом, каталитическая активность в отношении гомомолекулярного изотопного обмена кислорода может служить характеристикой энергии связи и реакционной способности кислорода. Это подтверждается на примере реакций окисления водорода, метана н разложения N0. Активность исследованных окислов во всех этих реакциях менялась симбатно активности катализаторов в реакции гомомолекулярного обмена. [c.89]

    На aO, полученном термическим разложением a(OH)j в различных условиях, изучена кинетика гидрирования этилена [312]. Показано, что в зависимости от температуры скорость реакции проходит через максимум при 320 К. Температурные области до максимума и после него отличаются значениями энергии активации. В интервале 197-273 К энергия активации составляет 12,6 к Дж/моль, а в диапазоне 373-623 К она отрицательна и равна —16,7 кДж/моль. Порядки реакции для этих температурных областей также различаются и составляют при 273 К по Hj и С2Н4 0,7 и О соответственно, а при 523 К они равны 1,0 и 0,9. Показано, что дейтерирование этилена при 523 К сопровождается изотопным обменом в этане и этилене, а при 273 К образуется лишь dj-этан. Это свидетельствует о том, что при пониженных температурах медленной стадией является присоединение первого атома или иона водорода к молекуле зтилена, а при повышенных температурах — второго. Методом отравления показано, что только 0,5% поверхности СаО является активной и в гидрировании [312]. [c.119]

    В противоположность это.му водород и аммиак быстро хемосорбируются и десорбируются на этих аммиачных катализаторах. Полуколичественные данные по обменным реакциям получили Тэйлор и Юнгерс [61], показавшие, что на дважды промотированном катализаторе при комнатной температуре за несколько часов реакция обмена проходит до стадии МНгО, а равновесные соотношения достигаются за несколько дней изотопные формы определялись методом УФ-спектроскопии. В более поздней работе Лейдлера и Вебера [62] по обмену на однопромотированном катализаторе найдено, что продолжительность жизни частиц МНз составляет около 100 мин при 120° и что энергия активации равна 13 ккал/моль это означает, что продолжительность жизни приблизительно равна 1 сек при 420° и при этих же низких концентрациях. Очевидно, что поверхностные реакции между Н, N. МН, ЫНз и ЫНд при температурах синтеза очень быстро достигают равновесия. Результаты Лейдлера и Вебера, а также некоторые другие данные по реакциям обмена на металлических пленках рассматриваются в этом разделе ниже. [c.294]

    Остается заключить, что хотя лимитирующие этапы этих реакций различны, каталитическая активность зависит от одного и того же свойства окислов, меняющегося в ряду рассмотренных катализаторов. Естественно иредиоложить, что таким свойством является энергия связи кислорода на поверхности окисла. При изотопном обмене эта величина определяет энергию активации адсорбции и десорбции кислорода, а при окислении водорода — энергию активации взаимодействия водорода с кислородом на поверхности катализатора. Аналогично и для других реакций окисления энергия активации взаимодействия окисляемого вещества с кислородом поверхности катализатора может зависеть от энергии связи кислорода. [c.53]

    Методами остановки реакции были исследованы реакции изотопного обмена с переносом электрона [41]. Пример такой реакции — обмен между ионами перманганата и манганата. Раствор перманганата (около 10" М), облученный нейтронами, смешивали с неактивным раствором манганата в аппаратуре, подобной той, которая показана на рис. 5 реакцию прерывали через 1—10 сек, проводя смешивание с соответствуюш,им раствором, который либо осаждал, либо экстрагировал перманганат. Найдено, что константа скорости (в 0,16М водном NaOH) составляет 710 л-молъ сек нри 0° и энергия активации 10,5 ккал-молъ . Таким же образом исследовали обмен ферроцен — ферроциний при 0° реакция была слишком быстрой, но скорость измерили при —75° [34]. [c.34]

    В работе Е. Н. Звягинцевой сделана попытка оценить, насколько отличаются скорости обмена водорода в одних и тех же веществах (ипдене, ацетофеноне и метилнафтилкетоне) с амфотерным и иротофильным растворителем (дейтороалкоголем и дейтероаммиаком) и как сказывается катализ в обоих растворителях (табл. 2). Обмен водорода со спиртом даже при 120—150° происходит медленнее, чем с аммиаком при 0°. Зная приближенно энергию активации изотопного обмена в аммиачном растворе (для индена 12 ккал, для ацетофенона 10 ккал), находим, что нри одинаковой температуре константы скорости реакций в обоих растворителях различаются на 4—6 порядков. Таково следствие большей протофиль-ности аммиака по сравнению со спиртом. [c.221]

    Кинетика реакции убедительно показывает, что процесс является гомогенным. Скорость обмена бензола имеет первый порядок как по бензолу, так и по платиновой соли, и обратный первый порядок по иону хлора [43]. Общая энергия активации для дейтерирования бензола равна 25,7 ккал моль, что существенно выше величины, полученной для соответствующей гетерогенной реакции над платиной, лежащей в пределах 9—17 ккал моль [48]. Для обмена бензола наблюдается [43] изотопный эффект /г (дей-терирования)//г (обратной реакции) = 1,65 Ч- 0,5. По аналогии с гетерогенным катализом, в гомогенной системе наблюдаются как ступенчатый, так и множественный обмен (табл. 4) и, следовательно, концепция и расчет множественного процесса, развитые Андерсоном и Кемболом [49] для гетерогенных условий, могут быть применены для гомогенного катализа. [c.109]

    Реакции изотопного обмена между металлом и ионом металла в водном растворе, очевидно, идут через рекристаллизацию, так как значения энергии активации, определенные опытным путем Хайсинским, Коттеном и Варябедья-ном [Н180] для ряда систем металл — ион металла, малы (от 3 до 8 ккал на моль). Они примерно на порядок величины меньше значений энергий активации, рассчитанных по данным для коэффициентов самодиффузии металлов (см. табл. IVA, часть II), и зависят от состава водной фазы. Было показано также, что скорость обменных реакций значительно больше тех скоростей, которых следовало ожидать, если бы обмен определялся самодиффузией возможное влияние самодиффузии на обмен при комнатной температуре рассчитывалось по данным измерений, проведенных при повышенных температурах. [c.37]

    При отсутствии неподеленных электронов синхронный процесс обмена невозможен и присоединению дейтерона должен предшествовать разрыв (или ослабление) связи с протоном, требующий большой энергии активации, что замедляет реакцию. Эти представления объяснили медленный обмен в связи С—Н и почти весь огромный зксдериментальный материал по изотопному обмену водорода в разнообразных типах соединений различных элементов. Они позволили также предсказать, а затем и экспериментально подтвердить (в работах с И. Г. Хаскиным и Л. В. Сулимой) медленный обмен или отсутствие обмена в связях 81—Н, Р(У)—Н и ионах NH . [c.21]

    СНВгз и СВГ4. Обмен всех упомянутых соединений с МаВг изучался при нескольких температурах, что позволило нам определить энергии активации исследованных реакций изотопного обмена. [c.724]

    По ассоциативному механизму при низких температурах протекают и другие реакции изотопного обмена, как, например, гомомолекулярный обмен водорода, окиси и двуокиси углерода. Для некоторых химических реакций окисления переход к этому механизму проявляется в изломе на аррениу-совском графике с резким снижением энергии активации в области низких температур. Скорость реакции при этом часто сохраняется довольно значительной. Так, например, окисление водорода протекает с заметной скоростью при —150° С. При повышении температуры протекание реакции по этому механизму перестает быть заметным либо вследствие исчезновения в катализаторе необходимых химических нарушений, либо в результате [c.38]


Смотреть страницы где упоминается термин Изотопный обмен энергия активации реакции: [c.338]    [c.93]    [c.468]    [c.59]    [c.415]    [c.45]    [c.29]    [c.104]    [c.596]    [c.8]    [c.57]    [c.28]    [c.65]    [c.71]    [c.262]    [c.477]    [c.257]   
Радиохимия (1972) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Активация реакцйи

Изотопные реакции

Изотопный обмен

Обмен изотопный Изотопного обмена

Обмен изотопный Изотопного обмена реакции

Реакции изотопного обмена

Реакции изотопного обмена Изотопного обмена реакции

Реакции обмена

Реакции обменные

Реакции энергия реакций

Реакция энергия активации

Энергией обмен

Энергия активации

Энергия обменная



© 2025 chem21.info Реклама на сайте