Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уран калий фторид

    Было найдено , что твердые растворы следов солей уранила в фосфатах натрия или калия, буры, а еще лучше во фторидах натрия или лития обладают яркой флуоресценцией последняя становится максимальной при определенном соотношении соли уранила к растворителю. Расплавы соли уранила с фторидом ка- [c.368]

    Перечисленные ниже ионы не мешают определению 0,4 мг/л нитрита по методу Райдера — Меллона при концентрациях, в 1000 раз (400 мг/л) превышающих концентрацию нитрита барий, бериллий, кальций, свинец, литий, магний, двухвалентные марганец и никель, калий, натрий, стронций, торий, уранил, цинк, арсенат, бензоат, борат, бромид, хлорид, цитрат, фторид, формиат, йодат, лактат, [c.128]


    На первой стадии плутоний и нептуний осаждаются в виде фторидов соответственно в трех- и четырехвалентном состоянии, наряду с фторидами продуктов деления урана и фторидом лантана, тогда как щестивалентный уран в значительной части остается в растворе. Окисляя полученный осадок броматом калия при 95 °С (с последующим вторичным осаждением фторидом лантана), отделяют целевые вещества от продуктов деления урана, причем Ри и Ыр остаются в растворе. [c.168]

    В настоящее время резко возрос интерес химиков к определению малых количеств примесей в чистых веществах. Это связано с организацией и развитием атомной промышленности, которой необходимы сверхчистые уран, торий, бериллий, цирконий, ниобий и др. металлы. Еще более чистые вещества потребовались в электронике и электротехнике (германий и кремний, селен и селени-ды, арсенид галлия, антимонид сурьмы, фосфиды индия и галлия). Для изготовления лазеров нужны чистый рубидий и редкоземельные элементы. Новая техника нуждается также в высокочистых хлориде и бромиде кадмия, фторидах лития и кальция, иодиде калия, бромиде и иодиде индия, цезии высокой чистоты, гидриде цезия и др. Стали существенно более чистыми материалы, с которыми работают в промышленности химических реактивов, в черной и цветной металлургии при производстве жаропрочных и химически стойких сплавов и т. д. [c.9]

    При выделении нептуния из урана, подвергнутого облучению нейтронами, предпочтительнее использовать фториды нептуния. На первой стадии плутоний и нептуний осаждаются в виде фторидов соответственно в трех- и четырехвалентном состоянии наряду с фторидами продуктов деления урана и фторидом лантана, тогда как шестивалентный уран в значительной части остается в растворе. Окисляя полученный осадок броматом калия при 95 °С (с последующим вторичным осаждением фторидом лантана), отделяют целевые вещества от продуктов деления урана, причем Ри и Нр остаются в растворе. [c.168]

    Из приведенного материала следует, что для использования фосфорной кислоты, плавиковой кислоты и сульфата калия в качестве реагентов для извлечения и очистки плутония необходимо введение носителя извне (фосфат висмута, фторид лантана, двойной сульфат лантана-калия). При этом процесс надо начинать с восстановления плутония и разделения урана и плутония. При использовании карбонатов или ацетатов для тех же целей носителем служит сам уран. [c.85]


    Во многих природных водах содержание урана составляет несколько микрограммов в литре, что, однако, не представляет опасности для здоровья и поэтому уран обычно не рассматривают в качестве загрязняющего воду вещества. Содержание этого элемента определяют флуоресцентным методом в расплаве фторид натрия — карбонат натрия — карбонат калия. Для выделения микрограммовых количеств урана из природных вод и осадочных пород очень хорошо зарекомендовал себя метод анионного обмена в водных растворах НС1 с добавкой метилцеллозольва [56]. Более простой способ, применяемый для анализа пресной воды, заключается в подкислении воды серной кислотой до ее концентрации 0,01 моль/л с последующим пропусканием через колонку с 0,5 см сульфатной формы сильноосновной анионообменной смолы дауэкс 1x8. При этом уран поглощается в виде его сульфатного комплекса. Колонку промывают 0,01 М раствором серной кислоты-для удаления нз нее железа и марганца, которые впоследствии могут гасить флуоресценцию. Уран вымывают несколькими миллилитрами 2 М серной кислоты и измеряют флуоресценцию этого раствора. Таким методом удается определить уран при его концентрации в воде 1-10 % [57]. [c.513]

    С) 10,1 10 град теплоемкость 6,34 кал/г-атом-град электрическое сопротивление Ъ1 мком см сечение захвата тепловых нейтронов 1,31 барн парамагнитен работа выхода электронов 3,07 эв. Модуль норм, упругости 6600 гс/жж модуль сдвига 2630 кгс .чм предел прочности 31,5 кгс мм предел текучести 17,5 кгс мм сжимаемость 26,8 X X 10— см кг удлинение 35% НУ= = 38. Чистый И. легко поддается мех. обработке и деформированию. Его куют п прокатывают до лент толщиной 0,05 мм па холоду с промежуточными отжигами в вакууме при т-ре 900—1000° С. И.— химически активный металл, реагирует со щелочами и к-тами, сильно окисляется при нагревании на воздухе. Работы с И. проводят в защитных камерах и высоком вакууме. И. с металлами 1а, На и Уа подгрупп, а также с хромом и ураном образует несмешиваю-щиеся двойные системы с титаном, цирконием, гафнием, молибденом и вольфрамом — двойные системы эвтектического типа (см. Эвтектика) с редкоземельными элементами, скандием и торием — непрерывные ряды твердых растворов и широкие области растворов с остальными элементами — сложные системы с наличием хим. соединений (см. Диаграмма состояния). Получают И. металлотермическим восстановлением, действуя на его фторид кальцием при т-ре выше т-ры плавления металла. Затем металл переплавляют в вакууме и дистиллируют, получая И. чистотой до 99,8-5-99,9%. Чистоту металла повышают двух- и трехкратной дис- [c.518]

    Выход пентафторида урана около 99% можно получить при трехстадийном осаждении в течение 6 ч. На 1 кг гексагидрата нитрата уранила требуется 0,2 кг дигидрата фторида калия, 0,4 кг плавиковой кислоты (48%) и около 0,3 кг спирта. [c.283]

    Для тушения его используют фторид кальция, для тушения непригодны азот, диоксид углерода и хладоны. Плутоний еще более чувствителен к возгоранию, чем уран. Уран, торий и плутонии весьма пирофорны в порошкообразном состоянии и легко возгораются от разрядов статического электричества. Компактный плутоний самовоспламеняется при 600 °С. Цирконий и магний значительно более активны и практически не горят только в атмосфере благородных газов, например аргона. Графит возгорается с большим трудом и только в накопленном состоянии, горит он гетерогенно, при высоких температурах реагирует с водяным паром. При температурах до 200—250 °С в графите под воздействием проникающей радиации искахоет-ся структура кристаллической решетки, и вследствие этого накапливается скрытая энергия (эффект Вигнера). Если эта энергия регулярно не рассеивается путем отжига (повышения температуры), то она может накапливаться до определенной точки и затем внезапно выделяться с резким повышением температуры, которая может привести к пожару. Горение графита ликвидируют обычно диоксидом углерода или аргоном. Можно применить и большие массы воды. Высокая пожарная опасность создается при применении в качестве теплоносителя натрия или калия. Хотя они горят медленно, но тушение их затруднено и требует специальных средств пожаротушения. [c.93]

    Отделение урана осаждением перекисью водорода применяется главным образом для выделения основной его массы из растворов при определении следов других металлов (титан, никель), так как образующиеся осадки перураната уранила обладают очень небольшой способностью адсорбировать из раствора другие элементы. Только калий, щелочноземельные металлы, железо и ванадий адсорбируются осадком в заметных количествах. Сульфаты и фториды несколько снижают полноту осаждения урана. Железо и медь затрудняют осаждение вследствие каталитического разложения перекиси водорода [741]. Для устранения мешающего влияния железа и меди рекомендуется прибавление малоновой или молочной кислот, образующих с ними достаточно прочные комплексы [8], [c.266]

    В некоторых случаях, когда интерес представляет определение только отдельного иона, предварительное разделепие на аналитические группы является излишним. Так, например, можно хроматографически отделить и идентифицировать в горных породах уран наряду с большим числом различных катионов [7], причем сопутствующие ионы этому не мешают. Для этого расплавляют небольшую пробу горной породы в смеси фторида натрия и сернокислого кислого калия на платиновой проволочке, перл растворяют в нескольких каплях 4,7 н. НМОз и наносят на пластинку постепенно увеличиваю-ищеся количества полученного раствора. [c.466]


    Максимумы светопоглощения экстрактов в изобутаноле находятся при 625 и 725 ммк. Оптимальные пределы концентрации фосфора составляют 0,2—1,5 мкг1мл. Определению не мешают ионы ацетата, бромида, карбоната, хлорида, цитрата, бихромата, фторида, йодата, нитрата, нитрита, оксалата, перманганата, сульфата, аммония, алюминия, бария, трехвалентного висмута, кадмия, кальция, трехвалентного хрома, двухвалентного кобальта, двухвалентной меди, двухвалентного железа, трехвалентного железа, двухвалентного свинца, лития, магния, двухвалентного марганца, двухвалентного никеля, калия, серебра, натрия, четырехвалентного тория, уранила и цинка. Концентрация ионов трехвалентного мышьяка, йодида и роданида не должна быть выше 50 мкг/мл, а концентрация силиката или четырехвалентного олова — выше 25 мкг/мл. Опре- [c.15]

    Фосфорномолибденовая кислота экстрагируется селективно, и ионы силиката, арсената и германата не мешают, в то время как при обычном методе определения по образованию фосфорномолибденовой кислоты названные ионы мешают определению. Уэйдлин и Меллон [26] исследовали зкстрагируемость гетерополикислот и установили, что 20%-ный по объему раствор бутанола-1 в хлороформе селективно извлекает фосфорномолибденовую кислоту в присутствии ионов арсената, силиката и германата. Предложенный ими метод позволяет определить 25 мкг фосфора в присутствии 4 мг мышьяка, 5 мг кремния и 1 мг германия. Более того, при экстракции удаляется избыток молибдата, поглощающего в ультрафиолетовой области. Измерение оптической плотности экстракта при 310 ммк обеспечивает увеличение чувствительности метода. Для получения надежных результатов необходимо строго контролировать концентрацию реагентов. Определению не мешают ионы ацетата, аммония, бария, бериллия, бората, бромида, кадмия, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, йодата, йодида, лития, магния, двухвалентного марганца, двухвалентной ртути, никеля, нитрата, калия, четырехвалентного селена, натрия, стронция и тартрата. Должны отсутствовать ионы трехвалентного золота, трехвалентного висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и цирконила. Допустимо присутствие до 1 мг фторида, перйодата, перманганата, ванадата и цинка. Количество алюминия, трехвалентного железа и вольфрамата не должно превышать 10 мг. [c.20]

    В расплавленном фториде натрия под действием ультрафиолетовых лучей уран дает интенсивную и хорошо воспроизводимую желтую флуоресценцию. Методы, основанные на этой флуоресценции, с успехом используются для определения следов урана в бедных рудах, песках, дшнералах и других материалах. Поскольку железо, медь, хром и марганец понижают интенсивность флуоресценции, уран обычно предварительно отделяют от других компонентов пробы экстракцией нитрата уранила соответствующими органическими растворителями, которые затем удаляют выпариванием. Сухой остаток сплавляют с фторидом натрия п карбонатом калия в золотой чашке. Плав извлекают из чашки, подвер- [c.531]

    Вторая реакция преобладает в реакторах с обогащенным ураном. От урана, осколков деления и плутония нептуний отделяется фторидным методом. Нептуний и плутоний восстанавливаются гидразином и соосаждаются с фторидом лантана с ними соосаждаются 0,05% урана и осколки группы редкоземельных элементов. Фторид лантана растворяется в 1 М азотной кислоте, содержащей борную кислоту, или в нитрате алюминия, переосаждается в виде гидроокиси и растворяется в 1 М серной кислоте. Нептуний окисляется 0,1 М раствором бромата калия при 35° в течение 1 часа. Плутоний при этом остается в восстановленном состоянии и увлекается совместно с осколками при повторном осаждении фторида лантана. Щестивалентный непту- [c.526]

    Мешающие вещества. Определению фосфора не мешают ионы аммония, натрия, калия, лития, магния, стронция, бария, бериллия, кадмия, кальция, хрома(III), кобальтл, меди(II), марганца (II), никеля, ртути (П), а также анноны — ацетат, борат, бромид, хлорид, иодат, иодид, нитрат и селенит. Ионы золота(III), висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и циркоиила должны отсутствовать. Могут присутствовать в количестве до 1 мг ионы фторида, перйодата, перманганата, ванадата и цинка. Наличие алюминия, железа(III) и вольфрамата не должно превышать 10 мг в пробе. [c.104]

    Осадительные методы. Выделение нептуния из облученного урана можно проводить соосаждением нептуния (VI) с уранил-триацетатом натрия или нептуния (IV) с фторидом лантана, фосфатом циркония, фениларсонатом и двойным сульфатом калия и лантана. [c.380]

    Впервые актиний был выделен из минералов, содержащих уран, где он присутствует в ничтожных количествах в настоящее время его получают в небольших количествах (порядка миллиграммов) из Ра (табл. 32.3) он образуется за счет реакций захвата нейтронов с последующим -распадом. Ион Ас отделяют от избытка Ра и изотопов ТЬ, Ро, В1 и РЬ (также образующихся при распаде или бомбардировке) ионным обменом или экстракцией теноилтрифтор-ацетоном. При осаждении АсРд из растворов и восстановлении безводного фторида парами лития при 1100—1275° или АсС1з парами калия при 350 получается серебристо-белый металл (т. пл. 1050°). Вследствие радиоактивности металл светится в темноте. Как и лантан, это реакционноспособный металл, он окисляется во влажном воздухе его реакционная способность отчасти обусловлена интенсивной радиоактивностью. Химические свойства иона Ас как в [c.539]

    Раствор, в котором желают определить уран по этому методу, должен быть, в общем, свободен от посторонних элементов, так как некоторые из них могут сильно уменьшать интенсивное флуоресценции. Мешают кремнекислота, соли титана, тория, же леза и сульфаты влияние марганца менее сильно. Калий, магний и барий в малых количествах не оказывают действия, однако кальций сильно мешает. Уже 6% фторида кальция в перле поч1и полностью погашают флуоресценцию, при 2% интенсивность флуоресценции понижается на 83% и при 1% — на 45%, В присутствии кальция оттенок флуоресценции зеленый. Достаточно всего 1% кальция, чтобы произошло видимое глазом изменение цвета свечения, благодаря чему можно избежать больших ошибок при оценке содержания урана 5. [c.490]

    Люминесценция многих соединений, активированных ураном, отличается большой яркостью уже при малых его содержаниях. Особенно интенсивно люминесцируют фториды щелочных металлов [271], содержащие уран их свечение более интенсивно, чем свечение некоторых ураниловых солей. Свечение плавов LiF-U — зеленого цвета, NaP-U — желто-зеленого, KF-U — оранже ю-го. Фтористый литий в люминесцентных методах определения урана не нашел широкого применения из-за того, что при высокой температуре он энергичнее взаимодействует с платиной, чем расплавленный фтористый натрий. Применение фторида калия в качестве основы для приготовления плавов (перлов) представлялось выгод ным, благодаря тому, что ниобий (см. стр. 44) в этом илаве не флуоресцирует однако свечение перла менее интенсивно и, кроме того, плавы отличаются большей гигроскопичностью. [c.39]

    Многие вещества в тем числе барий, бериллий,кальций,свинец, литий, магний, марганец (2+), никель (2+),калий, натрий, стронций, торий, уранил, цинк,арсенат,бензоат, борат,броглид,хлорид, цитрат, фторид, формиат, йодат,лактат,молибдат,нитрат,окса- лат,фосфат, пирофосфат, салицилат, селенат,сульфат, тартрат,тетраборат и роданид не мешают определению нитритов. [c.46]

    Показано, что применение смеси карбонатов натрия и калия обеспечивает удовлетворительное отделение микрограммовых количеств урана примерно от 0,01 г металлов, обычно сопутствующих урану Раствор анализируемого образца (5 мл) подкисляют серной кислотой и обрабатывают равным объемом раствора карбонатов (10%-ный по каждому из карбонатов калия и натрия), смесь в течение получаса нагревают при 80°, а затем в течение часа охлаждают до комнатной температуры и фильтруют. Соосаждение урана невелико. При осаждении из раствора, содержащего примерно 2 у и, в осадке, состоящем из 15 мг РезОз, СаО, MgO и МпО или 10 мг 2гОз, СоО, N 0 и ЬагОз, находят менее 0,01у и. Иттрий, 2г, V, Аз, 5т и 0(1 в миллиграммовых количествах, присутствуя порознь, не соосаждаются. В присутствии сульфатов увеличивается растворимость некоторых металлов, так, например, большая часть циркония и кобальта осаждается в отсутствие сульфатов. Кобальт, Се, N(1, Рг и А1 осаждаются карбонатом неполностью. Полное осаждение меди может произойти в том случае, если ее восстановить гидроксиламином до СигО уран при этом не осаждается. Среди элементов, осаждающихся неполностью, только церий и кобальт сильно гасят флуоресценцию урана при определении с использованием фторида натрия. Все другие упомянутые металлы, а также небольшие количества хрома после проведения карбонатного осаждения серьезно не мешают определению урана флуориметрическим методом (окислы V, Рг, N(1, 5т и 0(1 в количествах 5—10 мг дают немного заниженные результаты вследствие некоторого ослабления флуоресценции). [c.810]

    Комплексные соединения тетрафторида урана. Тетрафторид образует с фторидами металлов ряд двойных солей. Впервые соединения этого типа были обнаружены еще на ранней стадии развития химии урана. Так, в 1866 г. Болтон наблюдал образование зеленого нерастворимого в воде соединения в результате действия на раствор уранилфторида, содержащий фторид калия и муравьиную кислоту, сильного солнечного света [1, 2]. Фотохимическое восстановление ионов уранила в растворе, содержащем фторид натрия или фторид калия, может быть также достигнуто (на солнечном свету) с помощью спирта, этилового эфира или глюкозы [93]. Во всех случаях получается зеленое вещество, по внешнему виду напоминающее тетрафторид урана. Это соединение плавится на воздухе с выделением фтористого водорода остаток,образующийся после длительного нагревания, состоит из ураната калия или Натрия. С сухим водородом эти комплексные соли реагируют лишь медленно, в воде или в разбавленных кислотах практически не растворяются они разлагаются горячей концентрированной серной кислотой с выделением фтористого водорода. Концентрированная соляная кислота растворяет эти соли медленно. В старых работах для этих соединений были предложены формулы НаУРб [c.307]

    Расплавы хлоридов и фторидов щелочных п щелочноземельных металлов (N301, СаРа, СаОг, MgF2) не взахшодействуют с расплавленным ураном, так как химическое сродство этих металлов к галогена,м выше, чем сродство урана. Некоторые из этих галогенидов, например плавиковый пшат (фторид каль- [c.19]

    Фотохим11ческое восстановление пока не нашло широкого применения, так как трудно достичь количественного перехода шестивалентного урана в четырехвалентный. Для осаждения КиГд из азотнокислых растворов используется следующий процесс. На солнечном свету этиловый спирт восстанавливает уран даже в присутствии азотной кислоты поэтому при наличии в растворе уранилнитрата плавиковой киспоты и фторида калия протекает реакция [c.283]

    В промышленности давно известно получение металлов ири помощи электролиза. Применительно к урану разработан метод электролитического восстановления его галогенидов в расплавленных средах. Температура, при которой осуществляют электролиз, зависит от температуры плавления электролита. Чаще всего для осуществления электролиза в промышленности используют фтористые соли урана, тетрафторид и его соединение с фторидом калия КиРв. Выделение урана на катоде протекает по реакциям [c.379]


Смотреть страницы где упоминается термин Уран калий фторид: [c.59]    [c.309]    [c.280]    [c.86]    [c.169]    [c.86]    [c.169]    [c.130]    [c.129]    [c.344]    [c.486]    [c.148]    [c.150]   
Справочник Химия изд.2 (2000) -- [ c.409 ]




ПОИСК





Смотрите так же термины и статьи:

Калий фторид



© 2025 chem21.info Реклама на сайте