Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные орбитали и энергии делокализации

    Из энергий стабилизации (1, табл. 9-2) очевидно, что анилин приблизительно на 3 ккал более устойчив, чем можно ожидать даже для соединения, содержащего бензольное кольцо. Это может быть связано, согласно теории резонанса или теории молекулярных орбиталей, с делокализацией неподеленной пары электронов атома азота в бензольном кольце. Резонансные структуры таковы  [c.48]


    Неверное предположение заключается в том, что молекула бензола описывается структурой Кекуле. В гл. 13 было установлено, что структура Кекуле не позволяет объяснить равную длину всех шести связей между атомами углерода в бензольном цикле и что удовлетворительное описание химической связи в этой молекуле должно основываться на теории делокализованных молекулярных орбиталей. В гл. 21 мы познакомимся с большим классом ароматических соединений, в которых имеются делокализованные электроны. Во всех случаях делокализация обусловливает повышение устойчивости молекулы, так как энергия делокализованных электронов понижается. Метод энергий связей позволяет оценивать величину этой стабилизации на основе измерений теплот образования ароматических соединений. [c.34]

    Начиная с 50-х годов, получило развитие новое направление в разработке методов оценки реакционной способности молекул на основе представлений квантовой теории химической связи. Особенностью этого направления являются определение реакционных центров в молекулах исходя из молекулярной структуры и разработка методов оценки относительной реакционной способности молекул. Так, в методе Хюккеля реакционная способность молекул качественно характеризуется индексами реакционной способности плотностью электронного заряда, индексом свободной валентности, энергией делокализации и др. (см. 37). В методе МО ЛКАО была показана особая роль граничных молекулярных орбиталей. В 60-х годах Вудвордом и Хоффманом было сформулировано правило сохранения орбитальной симметрии в синхронно протекающих элементарных химических актах. Все эти положения получили логическое завершение в методе возмущенных молекулярных орбиталей (метод ВМО). [c.583]

    Предложены различные критерии ароматичности [139—141] энергия делокализации или энергия резонанса энергия резонанса, отнесенная к числу я-электронов [142] энергия резонанса, рассчитанная методом молекулярных орбиталей в самосогласованном поле (ССП МО) [143] длина углерод-углеродной связи [144] делокализация электронов в виде анизотропии диамагнетизма (кольцевых токов в спектрах ПМР) [145]. [c.236]

    На основе теории валентных связей (МЕС) и теории кристаллического поля (ТКП) невозможно достаточно полно описать свойства комплексных соединений. МВС, хотя и дает наглядное представление о химической связи между атомами, но ограничивается только качественными объяснениями. Не приводится интерпретация спектров комплексов и детальное объяснение магнитных свойств, не учитываются энергетические и другие факторы при образовании комплексов. Достоинство ТКП в возможности количественных расчетов и в сопоставлении теории с экспериментом, ио это сопоставление далеко не всегда на пользу ТКП. Для комплексов, в которых энергия делокализации играет значительную роль, например для систем, в которых существуют я-связи, электростатическая теория непригодна. ТКП не рассматривает электронную структуру лигандов и принимает их как неизменные частицы. Невозможность удовлетворительного описания свойств комплексов в МВС и ТКП в значительной степени связана с тем, что обе теории исходят из одностороннего и абстрактного предположения о природе связей в комплексах — чисто ковалентной (в МВС) или чисто ионной (в ТКП). Эти недостатки в известной мере преодолеваются в теории поля лигандов, которая использует метод молекулярных орбиталей (метод МО). [c.232]


    Плоскостное расположение радикала по отношению к бензольным кольцам обусловливает максимальное перекрывание молекулярных орбиталей и максимальную делокализацию непарного электрона по цепи сопряженных связей с минимумом энергии системы. [c.316]

    Первое включает делокализацию двух электронов (электронов, принадлежавших исходной связи Р—С), в то время как второе — делокализацию четырех электронов. Два электрона могут быть размещены на доступных связывающих молекулярных орбиталях, а дополнительные два электрона в карбанион-ном переходном состоянии могут быть размещены только на разрыхляющей молекулярной орбитали с более высокой энергией. Известны, однако, также 1,2-сдвиги арильных групп, например, в реакции хлорида (73) с натрием однако в этом случае возможна некоторая стабилизация карбанионного переходного состояния в результате делокализации дополнительных [c.327]

    В 45 было показано, что при взаимодействии двух одинаковых атомов вместо двух энергетически равноценных исходных атомных орбиталей образуются две молекулярные орбитали, отвечающие различным уровням энергии (рис. 45). Если взаимодействуют три атома, причем их валентные орбитали заметно перекрываются, то возникают не две, а три молекулярные орбитали, в равной степени принадлежащие всем трем атомам (делокализованные орбитали) и характеризующиеся тремя различными значениями энергии. При последовательном увеличении числа взаимодействующих атомов добавление каждого из них приводит к образованию еще одного энергетического уровня и к дальнейшей делокализации молекулярных орбиталей (т. е. к распространению их на большее число атомов) общее число энергетических уровней будет при этом равно числу взаимодействующих атомов. Схема подобного процесса представлена на рис. 135. [c.531]

    Проведенное обсуждение относилось к двухатомной молекуле, но общие принципы справедливы и для многоатомных молекул. Часто функциональные группы в многоатомных молекулах можно рассматривать как двухатомную молекулу (например, группу С = 0 в кетоне или альдегиде). Электронный переход может происходить в функциональной группе между орбиталями, которые аппроксимируются комбинацией атомных орбиталей двух атомов, так же как в двухатомной молекуле. Истинные энергии результирующих молекулярных орбиталей функциональной группы, конечно, зависят от влияний соседних атомов электронных смещений, сопряжения, стерических факторов, но качественно переход можно объяснить, пользуясь кривыми потенциальной энергии, сходными с кривыми для двухатомных молекул. В более сложных случаях, когда речь идет об орбиталях, включающих несколько атомов (т. е. в системе с делокализацией), для изображения кривых потенциальной энергии необходимы многомерные поверхности. [c.156]

    При образовании химических связей орбитали электронов атомов соединения определенным образом изменяются. Для внутренних электронов эти изменения незначительны. Внешние электроны, участвующие в образовании химической связи, не могут описываться орбиталями, соответствующими свободным атомам. При оценке состояния внешних электронов необходимо учитывать влияние всех атомов соединения и связанную с этим делокализацию внешних электронов в молекуле. Эти состояния электронов описываются молекулярными орбиталями. При характеристике молекулярных орбиталей необходимо учитывать не только тип молекулярных орбиталей в данном соединении, но и распределение электронной плотности по орбиталям, а также значение энергии электронов на этих орбиталях. [c.14]

    Достигнутый в последние годы прогресс квантовой химии особенно в теории молекулярных орбиталей и наряду с этим успех в области применения быстродействующих электронных вычислительных машин способствовали развитию различных областей химии. Ниже будут рассмотрены примеры использования квантовой химии в исследованиях гетерогенных систем. Склонность к делокализации 1) (Х) является индексом реакционной способности, введенным в работе [13] для характеристики способности отрыва атома X реагирующим радикалом. Согласно [13], этот индекс связан линейной зависимостью с энергией активации процесса отрыва атома X. [c.40]

    В методе молекулярных орбиталей идея делокализации л-электронов находит свое выражение в том, что электроны, находящиеся на орбиталях, охватывающих всю систему сопряжения, характеризуются минимальной энергией. Квантовомеханические расчеты полисопряженных систем с использованием метода молекулярных орбиталей были проведены рядом исследователей - . Эти расчеты также показывают, что взаимодействие л-электронов сопряженных связей сопровождается уменьшением внутренней энергии системы, возрастанием поляризуемости системы и снижением энергии возбуждения. Энергия сопряжения выражается обычно в единицах обменного интеграла р и для бензола, например, равна 2р(р=18 ккал/моль). Метод молекулярных орбиталей в различных его вариантах позволяет определить порядок связи, электронную плотность, индекс свободной валентности и некоторые другие характеристики сопряженных систем. Указанные параметры, отражающие, по сути дела, распределение электронной плотности, позволяют часто судить о реакционной способности сопряженных систем, о некоторых аспектах кинетики и термодинамики химических реакций, о структуре переходных комплексов и решать ряд других задач. [c.27]


    Расчеты молекулярных характеристик в методе МОХ. В методе МОХ устанавливают корреляции (соответствия) между характеристиками МО и свойствами молекул. Аналогично тому как это сделано для бензола, рассчитывают порядок связи и по корреляционному графику (см. рис. 48) определяют ее длину. Метод МОХ используется и для расчета энергии делокализации. Для бензола Ео = 2р (см. с. 117). Сравнив энергию реакции гидрирования бензола gHe (—209 кДж/моль) и трех молекул циклогексена gHio (—120 кДж/моль), находим Ео =2 =—151 кДж/моль. Полученная величина является не истинным, а эффективным значением р. Эту величину можно использовать, в свою очередь, для расчета энергии делокализации в производных бензола (табл. 11). Установлены корреляции между энергиями орбиталей по методу МОХ и спектрами. (Здесь эффективный параметр р имеет уже другое значение.) Они предсказывают в соответствии с опытом смещение полос в сторону низких частот для ряда бензолтрифенилен-> коронен. [c.119]

    СЫ- или СО),, т. е. имеет место делокализация электронов, можно показать с помощью спинрезонансной спектроскопии. Необходимо построить молекулярные орбитали комплексных соединений подобно тому, как это было показано при рассмотрении молекулярных орбиталей СН4 (разд. 6.3.4). Для этого берутся определенные линейные комбинации молекулярных орбиталей лигандов, которые имеют такую же симметрию, как и атомные -орбитали центрального иона. Линейные комбинации для октаэдрических комплексов приведены в табл. А.28, а в более наглядном виде—на рис. А.58. (Индексы симметрии а1е, е , (ы и т. д. взяты из системы обозначений, принятых в теории групп, и здесь не обсуждаются.) Молекулярные орбитали комплексных соединений образуются линейной комбинацией таких атомных орбиталей металла и орбиталей лиганда, которые имеют одинаковую симметрию, так как в этом случае наблюдается максимальное перекрывание. Результаты энергетических расчетов молекулярных орбиталей представлены на рис. А.59. Разрыхляющие орбитали отмечены звездочкой. Заполнение электронами происходит, как обычно, попарно. Если в образовании связи принимают участие-12 электронов от шести октаэдрических лигандов и п -электронов металла, то первые заполняют связывающие и- и -орбитали, а -электроны — несвязывающие t2e- и разрыхляющие вг -орбитали. Последние две молекулярные орбитали играют ту же роль, как и в теории поля лигандов. Их расщепление также обозначают 10/) , хотя на энергию расщепления влияет перекрывание при образовании ковалентных связей. [c.136]

    Энергия дедокадизации (ЭД) Согласно основной идее метода МО, электроны в молекуле располагаются на молекулярных орбиталях, охватывающих всю совокупность атомов, т е являются делокализован-ными Важнейшим следствием делокализации электронов, как показывают соответствующие квантово-механические расчеты, является повышение стабильности молекулы, что наиболее отчетливо проявляется в случае сопряженных и ароматических структур Величина, характеризующая с энергетической стороны глубину делокализации электронов в молекуле, получила название энергии делокализации (ЭД) Значение ЭД для многих сопряженных и ароматических молекул не только может быть рассчитано, но и в ряде случаев допускает прямую экспериментальную проверку Например, для молекулы бензола как теоретическое, так и экспериментальное значение ЭД 150 кДж/моль Это означает, что внутренняя свободная энергия реальной молекулы бензола на 150 кДж/моль ниже, чем у гипотетической молекулы бензола с тремя локализованными двойными связями [c.59]

    Приближенные квантово-механические расчеты показали, что основными факторами Н-связи являются электростатическое взаимодействие недеформированных молекул, отталкнвательное короткодействующее взаимодействие, уменьшение энергии в результате делокализации электронов, поляризационные эффекты, дисперсионная энергия [12]. Все они за исключением последнего приблизительно одинаковы по величине. Но точное значение каждого фактора в конкретном комплексе может быть определено лишь в результате более строгих расчетов. Поскольку выяснилось, что при образовании Н-связи существен перенос заряда, то делались попытки [13, 14] представить ВФ комплекса в виде суперпозиции ВФ невзаимодействующих молекул и ВФ комплекса с переносом заряда на разрыхляющую молекулярную орбиталь (МО) группы АН. Пуранику с сотр. [13], используя приближенное соотношение между частотами, полными порядками связей и их длинами, удалось получить связь между полярностью группы АН, потенциалом ионизации В, относительным сдвигом частоты основного тона валентного колебания АН, увеличением интенсивности, сродством к электрону группы АН и расстоянием АВ. Но все эти соотношения получены в результате серии приближений. К тому же, как показали недавние расчеты, рассматриваемые ниже, нельзя ожидать, что перенос заряда всегда является основной причиной Н-связи. [c.5]

    Уже в книге Э. Стрейтвизера [961, первом учебнике по применению молекулярных орбиталей для химиков-органиков, рассматриваются многие вопросы органической химии, для решения которых используются квантовомеханические расчеты. К пидм относится оценка распределения электронной плотности в молекулах, межатомных расстояний, энергий делокализации, потенциалов ионизации, энергий возбужденных состояний, а также кинетических характеристик реакций различных классов органических соединений. [c.125]

    Молекулярноорбитальная модель бензола выглядит следующим образом каждый атом углерода в кольце рассматривается как находящийся в состоянии р2-гибридизации и образующий три р -гибридных о-связи с валентными углами 120°. Все атомы, образующие молекулу, расположены в одной плоскости. На образование трех связей (двух С—С и одной С—II) каждый углеродный атом затрачивает три из четырех своих валентных электронов. Оставшиеся шесть электронов углеродных атомов располагаются на р-орбиталях (оси которых перпендикулярны к плоскости ядра) по одному у каждого атома углерода. Так как атомы углерода находятся на равных расстояниях в кольце, то р-орби-таль центрального атома углерода в любом из трех последовательных атомов образует л-связь, перекрываясь в равной степени с р-орбиталями двух боковых атомов углерода этой тройки. Две образующиеся таким образом молекулярные орбитали сливаются одна с другой с образованием делокализованной молекулярной орбитали (я-орбитали), охватывающей все кольцо, что обеспечивает более стабильное распределение электронной плотности, чем любое другое, при котором электроны рассматриваются попарно локализованными между соседними углеродамч (как в этилене). По этой причине длина связей С—С у бензола лежит между длиной связей простых и двойных, а прочность их значительно выше, чем в этилене. Бензол более стабилен, чем циклогексатриен, структуру которого для бензола предложил Кекуле. Необходимо сообщить довольно большое количество энергии молекуле бензола, чтобы возбудить ее до такого состояния реакционной способности, в котором молекула находилась бы, если бы у нее была структура, предложенная Кекуле. Разность энергий фактической молекулы и структуры Кекуле в основном возникает за счет делокализации я-электронов, и ее называют энергией делокализации молекулы она составляет 36 ккал/моль. [c.21]

    Если в образовании циклической сопряженной системы участвуют 4п л-электронов, такие соединения могут быть антиаромати-ческими и неароматическими. В антиароматических системах энергия делокализации р-электронов меньше, чем в нециклическом сопряженном полиене с тем же числом я-электронов, т. е. они оказываются дестабилизированными, и их энергия выше, чем вычисленная по аддитивной схеме для рассматриваемого соединения. При этом, как и в случае ароматических соединений, для проявления антиароматнчности необходимо, чтобы циклическая система имела плоское строение. Выводы о пониженной стабильности антиароматических соединений могут быть сделаны как на основании квантовохимических расчетов, так и из экспериментальных данных (рассмотрение антиароматичности в рамках метода возмущений молекулярных орбиталей см. в [10]). [c.41]

    Другой метод корреляции разработан Стрейтвизером [15]. Он принял, что для плоской молекулы ненасыщенного углеводорода, содержащего С — Н-связи, ацидифицированные ненасыщенной системой, термодинамическая кислотность пропорциональна разнице в энергиях п-делокализации АЕ .) между карбанионом 1(-Е я)а4 1 и исходным углеводородом [( л)аН 1 [уравнение (13)]. Он далее предположил, что 1) применима простая теория молекулярных орбиталей (МО) 2) величина р (резонансный интеграл) в уравнении (13) является варьируемым параметром, но одним [c.23]

    Одним из достижений теории молекулярных орбиталей является предсказание, что из числа моноциклических полностью сопряженных плоских полиолефинов особенно устойчивыми будут те, которые об.ладают (4 ге + 2) л-электронами п = 0,1,2,3 и т. д.), поскольку в этих случаях полностью заполняются связывающие молекулярные орбитали и выигрывается значительная энергия за счет делокализации электронов [35]. Наименыаие карбоцикли- [c.75]

    НЫХ его неполна, В результате чего он и имеет множество решений. Значительно более полпые сведения можно получить, изучая положение и интенсивности нескольких полос пог.тощения в спектрах. К решению такой задачи эмпирическая теория цветности уже не применима. Однако расчет и интерпретацию полос можно произвести на основе методов квантовой химии [3], среди которых все в бо.лее широких масштабах используются различные модификации метода МО ЛКАО (метод молекулярных орбиталей, взятых в виде линейных комбинаций атомных орбиталей). Как известно, в достаточно хорошем приближении можно рассматривать раздельно задачу о движении о- и л-электронов. Это позволяет построить упрощенные электронные функции многоатомной молекулы, пользуясь тем, что переходы между уровнями энергии а- и л -электронов лежат в существенно разных областях спектра. Так как окрашенные реагенты и их комплексы поглощают в области, соответствующей я — л -переходам, для решения вопросов о связи строения и цветности соединений можно ограничиться л-электронным приближением. Это означает, что учитываются только эффекты, связанные с делокализацией. [c.37]

    Электроны в состоянии р. образуют в молекулах органических веществ с сопряженными связями я-систех у с оби1ей узловой плоскостью. ЛКАО (линейная комбинация атомных орбиталей) описывает систему набором атомных волновых функций 1 мол = 2с, 1 ат, где С определяют вклады атомных орбиталей в молекулярную. Прочность каждой связи определяет сумма энергий 1) кулоновской — а (взаимодействие электронов с ядерным остовом, или энергия локализации), 2) обменной — 5 (взаимодействие электронных облаков, или энергия делокализации), 3) перекрывание электронных облаков — 5. [c.167]

    Как следствие делокализации молекулярных орбпталей по многим (возможно, даже всем) атомным центрам молекулы может не существовать достаточно четкой взаимосвязи между молекулярными орбиталями химически родственных молекул. Например, не очевидно, что орбитали метана аналогичны орбиталям этана или циклогексана. Однако имеется масса химических и физических данных, которые указывают на большое сходство связей СН в этих соединениях. Для углеводородов длина связи СН всегда составляет примерно 1,06 А, ее силовая постоянная, как правило, порядка 500 Н-м , а энергия, необходимая для разрыва связи, равна приблизительно 400 кДж-моль . Аналогично всегда приближенно постоянны длина, силовая постоянная [c.166]

    Рассматривая первую я-систему, можно заметить, что если жг-орбиталь участвует в образовании я-системы в большей степени, чем уг-орбиталь, то возможно непрерывное перекрывание - и / -орбиталей вдоль или вокруг скелета [67—69, 72]. Это перекрывание отличается от ранее рассмотренной делокализации в рл—Рл-системе тем, что в данном случае будет иметь место несовпадение знаков орбиталей в циклическом тримере, и поэтому можно ожидать уменьшения степени делокализацин (рис. 3.4, а). Результаты расчетов таких моделей по методу молекулярных орбиталей показали, что при любом четном числе электронов образуется заполненный электронный слой (т. е. правило Хюккеля 4 + 2 не выполняется) и что с увеличением размеров цикла энергия, приходящаяся на л-электрон, [c.71]

    Обратимся теперь к мезомерному эффекту, или эффекту сопряжения. Здесь надо принять во внимание, что я-электроны двойной связи могут быть способны к миграции на заместитель X, а я-электроны от X должны будут мигрировать в область С=С-связи. В терминах метода МО это означает, что теперь нас интересуют разрешенные молекулярные орбитали не прежней двухцентровой системы С=С, а трехцентровой системы X—С=С. Полный 2ря-элек-тронный расчет заключается теперь в составлении детерминантного уравнения из трех строк и столбцов, очень похожего на уравнение (229), за исключением того, что кулоновский терм для атома заместителя будет иным, чем для атома углерода д. Уже указывалось, что в грубом приближении а является мерой ионизационного потенциала атома. Поэтому, во всяком случае для фтора и хлора, ах > с - счастью, однако, можно объяснить энергию молекулярных орбиталей не прибегая к прямому решению этого детерминантного уравнения. На рис. 25 слева приведены энергии при = 0. Физически это означает, что отсутствует делокализация электронов в заместителе и двойной связи. Так как > , энергия орбиталей атома X лежит ниже, чем для двойной связи. (Строго говоря, требуется, конечно, выполнение условия с + Р I х с Однако и это неравенство соблюдается почти всегда.) Теперь справа показано, что происходит, когда мы допускаем делокализацию и эффективно смешиваем орбитали, показанные слева. Общее правило [42] состоит в том, что при смешении такого рода энергии ведут себя так, как будто они отталкиваются друг от друга на энергетической диаграмме. Это означает, что энергия связи С=С е+ сдвигается вверх от энергии X что должно привести также к небольшому сдвигу вверх и е . В результате разность энергий е —е+ уменьшается. Таким образом, наблюдается сдвиг поглощения в красную, т. е. длинноволновую область. [c.94]

    На примере молекулы водорода мы встречаемся с другим крайним случаем, для которого, согласно определению, ионная связь отсутствует, хотя электростатические члены еще остаются единственными определяющими потенциальную энергию системы . В этом случае связь распространяется на большую область пространства, которое имеет положительный электрический потенциал, достаточный для сильного притяжения электрона. Эта большая область взаимодействий допускает соответственно меньшее значение кинетической энергии для каждого электрона, чем было бы возможно в другом случае, а общее уменьшение полной энергии равно теплоте диссоциации. Таким образом, согласно модели чисто ковалентной связи, электроны в молекуле делокализовапы по сравнению с их состоянием в свободных атомах. Делокализация электрона в теории валентной связи рассматривается как принадлежность электрона обычно двум атомам, но можно учесть принадлежность электрона и большему числу атомов, если включить несколько резонансных структур. В теории молекулярных орбиталей электрон рассматривается принадлежащим двум или более атомам, а в пределе — принадлежащим всей молекуле. [c.52]

    Хюккелевская классификация я-электронных систем основывается иа элементарной теории молекулярных орбиталей, которая пе учитывает отталкивания между электронами. Пытаясь учесть этот эффект, Коулсон и Раш-брук пришли к другой полезной классификации, согласно которой я-электронные системы делятся на альтернантные (сокращенно альт. ), если спиновые метки (а и Р) я-электронной системы непрерывно чередуются, и неальтернантные ( неа. ) в противном случае. Смысл этой классификации состоит в том, что в неальтернантных углеводородах распределение я-электронов между я-центрами является нечетным, причем заряд па одном конце связи увеличивается за счет уменьшения заряда на другом конце. Так, в азулене я-электроны не только смещены от семичленного цикла к пяти-членному (если представить, что вначале кангдый цикл имел по шесть я-элек-тронов), обусловливая появление дипольного момента, но также, согласно расчетам, в каждом кольце они сконцентрированы у чередующихся атолшв. Можно ожидать, что такая концентрация зарядов на некоторых я-центрах будет мешать делокализации однако этот эффект невелик. В настоящее время известно много неальтернантных молекул. Энергия мезомерии этих молекул понижена не сильно. Альтернаптность, вообще говоря, не связана с ароматичностью. [c.168]


Смотреть страницы где упоминается термин Молекулярные орбитали и энергии делокализации: [c.154]    [c.96]    [c.551]    [c.571]    [c.286]    [c.314]    [c.94]    [c.102]    [c.364]    [c.518]    [c.47]    [c.493]    [c.167]    [c.11]   
Смотреть главы в:

Химия гетероциклических соединений -> Молекулярные орбитали и энергии делокализации




ПОИСК





Смотрите так же термины и статьи:

Делокализация

Делокализация орбиталей

Молекулярные орбитали орбитали

Орбиталь молекулярная



© 2024 chem21.info Реклама на сайте