Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Палладий определение в платине металлической

    Разработана методика активационного определения суммы редкоземельных элементов, рутения, палладия и платины с радиохимическим выделением этих элементов [753]. Предложен метод выделения и очистки Оу , Ки ° , Pd ° , Pt на изотопных носителях с использованием экстракции трибутилфосфатом. Для намерения активности определяемых элементов применяют торцовые счетчики. Сумму редкоземельных элементов определяют по изотопу Dy . В различных образцах металлического бериллия определено б Ю —3 10 Ки, 5-10 —Ы0- Рс1, 6 10 — ЫО Р1, 2,6-10-4—7-10 о/р суммы редкоземельных элементов. Возможно также у-спектрометрическое определение продуктов нейтронной активации [754, 755]. [c.192]


    Несмотря на большое число работ, посвящаемых изучению гетерогенного катализа, и, в частности, выяснению факторов, влияющих на активность катализатора, теория гетерогенного катализа не достигла еще такой степени развития, чтобы можно было дать законченные рецептуры получения активного катализатора для любой интересующей нас реакции. Поэтому разработка катализатора для требуемой реакции в значительной степени осуществляется с помощью подбора материала катализатора и условий его приготовления. Однако для многих групп реакций уже известны определенные типы катализаторов, как, например, металлические никель, палладий или платина для процессов гидрогенизации или дегидрогенизации органических соединений. [c.340]

    При определении палладия в металлической платине чистотой 99,993 навеску 1 г растворяют в царской водке, дважды выпаривают досуха с [c.15]

    Для анализа благородных металлов применяются прямой и комбинированный спектральные методы. Прямым методом, при-котором получают спектр самой пробы, пользуются при анализе достаточно богатых материалов, например аффинированных металлов [380—386], сплавов [370—387] и т. п. Исследуемые материалы либо вводятся в зону разряда путем испарения порошков в кратере электродов (графитового, угольного, металлического), либо сами служат электродами. Спектральный метод применяют для определения Ю —ю-з% благородных и неблагородных металлов в платине, палладии, родии [379—386, 409], иридии, рутении [395, 397, 409], золоте [398]. [c.204]

    Метод сожжения применяют главным образом для определения метана и его гомологов, для которых до сих пор не найдены подходящие поглотители, а также для определения водорода и иногда окиси углерода. Очень редко сожжением определяют непредельные углеводороды (ацетилен, этилен, пропилен). Анализ газов путем сожжения заключается в том, что к исследуемой газообразной смеси горючих компонентов добавляется либо чистый кислород, либо воздух, а затем газовую смесь воспламеняют электрической искрой (анализ взрывом) или медленно сжигают над накаленной металлической платиной или палладием. Замена при сжигании кислорода воздухом крайне нежелательна, так как при этом в реакции принимает участие только 21% полезного кислорода кроме того приходится сильно сокращать объем газа, взятого для сжигания, что безусловно отражается на точности анализа. [c.158]

    В бинарных металлических системах со сходными диаграммами состояния краевые углы тем меньше, чем ближе точки плавления металлов. Это наблюдение указывает на связь смачивания с растворением твердого металла в жидком, поскольку оно идет тем интенсивнее, чем ближе друг к другу точки плавления твердого и жидкого металлов [130]. При контакте жидких щелочных металлов с непереходными твердыми металлами (медь, золото, серебро, платина, палладий, цинк) в атмосфере аргона полное смачивание происходило в тех случаях, когда отношение атомных радиусов жидкого и твердого металлов было меньше определенного критического значения (1,40 — для натрия 1,56 — для калия). Эта корреляция объясняется тем, что на поверхности раздела фаз происходит перестройка расположения атомов в жидкой фазе перестройки осуществляются легче, чем в твердом теле, поэтому и нарушения прежнего порядка в жидкости должны быть больше. Чем сильнее эти нарушения, тем больше должна быть межфазная свободная поверхностная энергия в свою очередь нарушения тем сильнее, чем больше отношение атомных размеров жидкости и твердого тела [132]. [c.91]


    Металлические родий, палладий, платина, рутений, никель отравляются сероводородом (рис. 18). С увеличением концентрации яда до определенной величины активность катализатора (/С, г сульфолена/г [c.66]

    Состав извлекаемых бензолом соединении кобальта с НН, а также с р-нитрозо-а-нафтолом выражается формулой СоКз, где R — остаток нитрозонафтола. Молярный коэффициент погашения комплекса кобальта с а-нптрозо-р-нафтолом в бензоле при 416 ммк равен 30000, а кобальта с р-нитрозо-а-нафтолом при 360 ммк, равен 44000. С помощью а-нитрозо-р-нафтола можно определить кобальт в присутствии 60-кратного количества никеля и 3000-кратного ко.личества железа, а с номощью р-нитро-зо-а-нафтола — в присутствии 400 частей никелеп и 500 частей железа. На основе полученных резу.льтатов разработан экстракционно-фотометрический метод определения кобальта в стали [224—226]. Аналогичный метод применен для определения кобальта в металлическом натрии [227]. Изучены условия экстракционно-фотометрического определения палладия и платины с [c.245]

    Применение растворителей с высокой упругостью паров, таких, как метанол, хлороформ, этилацетат, нежелательно, так как это может привести к конденсации паров растворителя в бюретке с водородом. При выборе растворителя предварительно проверяют растворимость вещества в нем. При обсуждении результатов гидрогенизации, как и при определении активного водорода, необходимо учитывать наличие групп, которые могут подвергаться восстановлению, например тидроксильных групп или атомов галоидов. Тип катализатора оказывает значительное влияние на течение гидрогенизации. Чаще всего применяют коллоидный палладий, коллоидную платину, платиновую чернь, окись платины (катализатор Адамса) [5, 6, 84], никель Ренея, а также металлический никель, полученный восстановлением его окиси [215]. Катализатор подбирают в зависимости от вида вещества. Если строение последнего неизвестно, следует провести [c.184]

    Рассмотренные выше результаты, полученные при электроосаждении палладия и платины из растворов хлоридных и бромидных комплексов Рс1 (И) и Р1 (II), определенно свидетельствуют в пользу механизма (VI. 1)—( 1.3), включающего медленную электрохимическую стадию, в которой участвуют комплексы, содержащие ионы металла, непосредственно связанные с металлическим электродом. Эти результаты подтверждают важное положение, высказанное Геришером [419], что адсорбированные на поверхности электрода лиганды, являющиеся продуктами электровосстановлення комплексов, затрудняют рост кристаллической решетки металла. Подобный эффект, возможно, обусловливает увеличение числа дефектов в кристаллической решетке платинированной платины при изменении потенциала при ее осаждении от —0,05 до +0,25 В (относительно обратимого водородного электрода в растворе, содержавшем [c.196]

    Хотя обычно нельзя с уверенностью сделать обобщений по поводу окислителей и восстановителей, тем не менее, имеется одно утверждение относительно валентного состояния более металлических элементов переходной области, которое можно высказать вполне определенно. В любой данной группе периодической таблицы влево от металлов железа, палладия и платины элементы с большим атомным весом стремятся существовать в более высоком валентном состоянии. Поэтому соединения, в которых более тяжелый элемент имеет высшую валентность, являются менее сильными окислителями. Так, шестиваленткые соединения молибдена, вольфрама и урана являются слабыми окислителями. [c.434]

    Замятина В. Н., Чикишева Л. А., Радиохимия, 5, 294 (1963). Количественное определение всех редких земель, рутения, палладия и платины в металлическом бериллии активационным методом. [c.214]

    Каталитическую активность гетерогенного катализатора характеризуют константой скорости реакции, отнесенной к одному квадратному метру поверхности раздела фаз реагентов и катализатора, или скоростью реакции при определенных концентрациях реагирующих веществ, отнесенной к единице площади поверхности. Промышленные катализаторы применяют в форме цилиндров или гранул диаметром несколько миллиметров. Гранулы катализатора должны обладать высокой механической прочностью, большой пористостью и высокими значениями удельной поверхности. Большую группу катализаторов получают нанесением активного агента, например платины, палладия, на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве носителей применяют активированный уголь, кизельгур, силикагель, алюмогель, оксид хрома (П1 и другие пористые материалы. Носитель пропитывают растворами солей металлов, например Pt, Ni, Pd, высушивают и обрабатывают водородом при 250—500° С. При этом металл восстанавливается и в виде коллоидных частиц [л = (2 -f- 10) 10 м1 осаждается на поверхности и в порах носителя. Можно провести синтез катализатора непосредственно на поверхности носителя, пропитав носитель растворами реагентов, с последующей термической обработкой. Так получают катализаторы с металлфталоцианинами, нанесенными на сажу, графит и другие носители. Широко применяются металлические сплавные катализаторы Ренея. Их получают из сплавов Ni, Со, u, Fe и других металлов с алюминием в соотношениях 1 1. Сплав металла с алюминием, измельченный до частиц размером от 10" до 10" м, обрабатывают раствором щелочи, алюминий растворяется, остающийся металлический скелет обладает достаточной механической прочностью. Удельная поверхность скелетных катализаторов превышает 100 м г" . Такие катализаторы применяются в процессах гидрирования, восстановления и дегидрирования в жидкофазных гете рогенно каталитических процессах. [c.635]


    Растворением молекул Н2 в металлах объясняют способность водорода Нз диффундировать через металлические стенки. Так, если в атмосферу водорода Нд внести запаянную с обоих концов нагретую палладиевую трубку, из которой выкачан воздух, то через некоторое время давление внутри трубки и снаружи уравновешивается, как будто стенок трубки и нет. Этим пользуются для определения парциального давления водорода в газовой смеси. По наблюдениям Зиворта и Бэкмана, диффузия водорода через металлические стенки начинается для палладия при 240°, для железа — при 300°, для никеля — при 450°, для платины — при 500° и для меди — при 640° С. [c.616]

    Поверхность гидридполиси-локсана обладает хорошими восстановительными свойствами [374]. На этой поверхности очень хорошо восстанавливается, даже из сильно кислых растворов, палладий, платина, серебро, ртуть. Никель, свинец и медь могут восстанавливаться из растворов их солей при определенном значении pH раствора. Покрытие поверхности адсорбента различными металлами в виде металлического монослоя представляет значительный интерес для получения катализаторов. [c.171]

    Гросскопфом [31] описан колориметрический метод определения водорода в газах, основанный на образовании воды при взаимодействии с кислородом. Исследуемый газ пропускали через трубку, содержащую последовательно слой гопкалита, предназначенный для поглощения содержащихся в газе паров воды, слой металлического катализатора (платина, палладий или никель), способствующего окислению водорода до воды, и, наконец, керамическую мембрану, пропитанную смесью диоксида селена с моногидратом серной кислоты и активированную парами углеводородов. На присутствие паров воды указывало изменение цвета такой мембраны от исходного желтого до красного. По ширине окрашенной в красный цвет зоны можно определять содержание от О до 5% водорода (или паров воды) при использовании 0,5 л образца исследуемого газа. [c.356]

    Рассмотренные опытные данные по каталитическим свойствам веществ в отношении окисления органических соединений указывают на существование определенной взаимосвязи между типом катализируемой реакции и положением в таблице Менделеева элементов, входящих в состав соответствующих оптимальных катализаторов. Так, наиболее активные металлические и окисные катализаторы глубокого окисления различных веществ обычно содержат элементы УИ1 групп — платину, палладий, кобальт, никель, а также элемены соседних побочных подгрупп УИ и I групп (медь, марганец). Неполное окисление различных соединений в органические кислоты или их ангидриды, а также ароматических веществ и спиртов в карбонильные соединения лучше всего катализируют окисные контакты на основе ванадия и молибдена — переходных элементов У и У1 групп. Мягкое окисление олефинов эффективно ускоряется катализаторами, содержащими элементы побочной погруппы I группы (Си, А ), а окислительное дегидрирование — сложными окис- [c.212]

    Характерная особенность всех изложенных опытов — работа с искусственно приготовленными системами, для которых метод приготовления в значительной мере предопределяет химический результат. Возникает естественный вопрос, как все это применимо к генезису катализаторов в обычных условиях в отсутствие таких химически активных агентов, как металлоорганические соединения, сильные минеральные кислоты и т. д. Экспериментальные работы в этой области очень трудны, так как дело идет о захвате очень небольших количеств обычных веществ высокодисперсными твердыми телами, анализ которых представляет сам по себе трудную задачу. Из работ в этой области следует упомянуть работы Левиптова по спектральной методике определения металлоидов в твердых телах, использование полярографии Жабровой и другими. Однако па этом пути результаты будут получены не так скоро, так как мало обнаружить по линиям спектра или по полярографической волне наличие определенных примесей следует узнать, какие из них влияют на активность, какие — нет. Весьма перспективен другой путь введения в генетическую систему веществ в виде меченных молекул, за которыми можно следить непосредственно в сколь угодно сложной обстановке. Разведочные работы в этом направлении мы вели в 1940—1941 гг., и они оказались успешными. Ограничимся упоминанием о наблюдениях Брежневой и Озиранера над захватом и промотированием металлической платины и палладия следами фосфата. Для этого из серы нейтронным облучением приготовляли высококонцентрированный препарат радиофосфора, который в виде фосфат-иона вводили в раствор муравьинокислого натрия, применявшегося для выделения платины и палладия из их хлоридов. Концентрацию фосфат-иона легко было при этом менять в очень широких пределах, а захват наблюдать по р-изпучению катализатора. [c.42]

    Гндро-дегидрогепизационный компонент. Как уже отмечалось ранее, гидро-дегидрогенизационная активность металлического компонента бифункционального катализатора играет исключительно важную роль с точки зрения оценки обш ей активности катализатора и его избирательности в реакциях преобразования углеводородов. Большим количеством работ, ставивших целью определение активности различных металлических катализаторов в реакциях гидрогенизации и дегидрогенизации углеводородов, было показано что такие металлы, как платина, палладий, никель и кобальт, гораздо активнее в указанных реакциях, чем железо, медь и цинк. Как уже сообщалось выше, этот порядок активности наблюдался Чанетта и Хантером [38] нри исследованиях реакции изомеризации к-гексана в присутствии бифункциональных катализаторов, содержащих платину, кобальт и никель. [c.570]

    Платина, палладий, родий, иридий, рутений и золото в рас творах соляной или бромистоводородной кислот в присутствии ЗпСЬ или ЗпВгг образуют окрашенные соединения, которые используются для колориметрического определения этих эле-.ментов, так как реакция весьма чувствительна. Окраска растворов золота обусловлена образованием коллоидных растворов металлического золота. Природа окрашенных соединений платиновых металлов оставалась неизвестной. В последние годы было установлено, что металл в этих соединениях входит в состав комплексных анионов, в которых отношение олова (II) к [c.58]

    Высокая полнота и избирательность извлечения золота(1П) объясняют широкое использование экстракции его из хлоридных растворов для решения прикладных задач, особенно аналитических. В частности, экстракция из хлоридных растворов применялась при определении золота в рудах и породах [820, 849, 850, 854], продуктах обогащения [846, 854], полупродуктах производств цветных металлов [847, 853, 854, 859], металлах (железе [818], аффинированном серебре [821], катодном никеле [821], платине [826], палладии [829, 831, 836], родии [829], осмии [833], меди [853, 859]), полупроводниковых материалах [830], солях [822], природных водах [823] и других объектах [364, 817, 820, 824,825, 828, 834, 835, 839, 841, 848,852, 855, 857, 864], а также при определении примесей в металлическом золоте [832, 842]. При этом в качестве органических растворителей использовали ДЭЭ [817, 818, 820-825], ДХДЭЭ [829-831, 855], алкилацетаты [826, 833-836, 839, 841, 842], МИБК [837, 847, 848], полиэтиленгли-коль [853, 854]. [c.150]

    Экстракция палладия из роданидных растворов используется в технологии и аналитической химии этого элемента. Голуб и Померанц [1220[ отделяли палладий от серебра (в сплавах и шламах) экстракцией спиртами или циклогексаноном. Подобная схема использована для определения примеси серебра в металлическом палладии. Экстракция роданидного комплекса палладия изоамиловым спиртом [1227] и растворами ДАПМ в изобутиловом спирте, разбавленном бензолом [1209], может быть использована для фотометрического определения палладия. Дэ и Сен [1231] разработали методику определения палладия в растворах, включаюш ую экстракцию палладия из слабокис.лых (pH 2—8) роданидных растворов ТБФ. Схема позволяет отделять палладий от железа(1И), меди(П), платины(1У) и других элементов. [c.210]

    Е. Уитчерса I7] другие металлы отделяются нитритным методом до иль мосле гидролиза в зависимости от их природы и количества. Так же редко сейчас применяется отделение родия от иридия осаждением солями трехвалентного титана вследствие необходимости последующего трудоемкого и сложного отделения этих металлов от титана двукратное осаждение сульфатом хрома (И) или ванадия (II) дает чистый осадок металлического родия, но перед определением иридия необходимо предварительно удалить хром или ванадий из раствора, что является почти такой же сложной операцией, как и удаление титана. Быстрое и полное отделение платины, палладия и родия от иридия и многих неблагородных металлов может быть выполнено из солянокислых растворов гипофосфитом натрия в присутствии солей ртути из фильтрата иридий выделяется двукратным броматным гидролизом, причем второе осаждение производится из слабокислого азотнокислого раствора. [c.380]

    Э. Шлоссер (Франкфурт на-Майне, ФРГ). Хемосорбция водорода известна как проверенный метод определения числа атомов металла, находящихся на поверхности нанесенных металлических катализаторов. Для таких металлов, как никель или платина, полученные результаты, безусловно, верны. Однако уверены ли авторы доклада 31, что в случае палладия в выбранных условиях водород только хемосорбируется, но не растворяется в большей или меньшей степени так, чтобы удовлетворялось отношение Н /Рд на поверхности = 1 2  [c.338]


Смотреть страницы где упоминается термин Палладий определение в платине металлической: [c.379]    [c.386]    [c.616]    [c.426]    [c.97]    [c.431]    [c.1864]    [c.362]    [c.377]    [c.266]    [c.57]    [c.94]    [c.240]    [c.307]    [c.97]   
Химико-технические методы исследования (0) -- [ c.340 , c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Палладий

Палладий определение от платины

Палладий палладий

Платина металлическая



© 2025 chem21.info Реклама на сайте