Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ активными центрами

    Гл. ХПГ Теория активных центров в гетерогенном катализе [c.334]

    Большое значение для химмотологии имеет окислительный катализ, поскольку он заметно влияет на изменение эксплуатационных свойств практически всех горюче-смазочных материалов. В окислительном катализе поверхностные активные центры выполняют несколько функций. Одна из них — обеспечение кислородного обмена, т. е. адсорбции газообразного кислорода, перевода его в активную форму и последующего удаления в качестве составной части продуктов реакции. При адсорбции на металлическом катализаторе кислород может вос- [c.195]


    Гем, или порфирин железа, входит также в активные центры ферментов, таких, как пероксидаза и каталаза. Многие другие переходные металлы также являются важнейшими участниками ферментативного катализа некоторые из них будут обсуждены в гл. 21. В результате появления миоглобина и гемоглобина были сняты ограничения на размеры живых организмов. Это привело к появлению разнообразных многоклеточных организмов. Поскольку переходные металлы и органические циклические системы с двойными связями, подобные порфиринам, чрезвычайно приспособлены к поглощению видимого света, а их комбинации проявляют разнообразные окислительно-восстановительные свойства, жизнь можно рассматривать как одну из областей, где протекают процессы координационной химии. [c.262]

    При определенных условиях наблюдается быстрая реакция между и lj. Взрыв в этой реакции, если он имеет место, носит тепловой характер. В каком же смысле можно говорить об автокатализе активными центрами, приводящем ко взрыву Катализ активными центрами приводит к взрыву в том случае, если в ходе реакции происходит увеличение концентрации активных центров. [c.382]

    Имеются доказательства, что при гетерогенном катализе активными центрами являются места выхода на поверхность дислокаций, на которых локализуются электроны или дырки. Каталитическую активность поэтому можно модифицировать, изменяя плотность активных центров, путем циклического изменения температуры или состава газовой среды или же очищая поверхность от каталитических ядов. [c.51]

    Наиболее важный класс глобулярных белков образуют биологические катализаторы, ферменты. Они характеризуются каталитическим механизмом, позволяющим им ускорять достижение конкретной реакцией состояния термодинамического равновесия, а также специфичность к субстрату, благодаря которой они способны делать выбор между потенциальными молекулами субстратов, воздействуя на одни из них и отказываясь воздействовать на другие. Участок поверхности фермента, на котором происходит катализ, называется активным центром. Механизм катализа может осуществляться при помощи заряженных групп, доноров и акцепторов электрона или протона, а также при помощи атомов металла в активном центре фермента. Избирательность ферментов обусловливается формой их поверхности и характером взаимодействия с субстратом, например водородной связью, электростатическим взаимодействием или гидрофобным притяжением. Фермент и его субстрат соответствуют друг другу по форме и размеру, как ключ и замок. [c.339]


    Предложен ряд теорий, объясняющих, или вернее предполагающих, схемы дейстеия катализаторов. С нашей точки зрения наибольшего внимания заслуживает мультинлетная теория катализа, разработанная акад. Баландиным. Согласно этой теории поверхность катализатора неоднородна, на ней имеются отдельные активные точки. Несколько активных точек образует каталитический центр — мультиплет. На таком каталитическом центре и происходит химическая реакция. Молекулы реагирующих веществ притягиваются к активным центрам, сгущаются вокруг них или, как говорят, адсорбируются на катализаторе. В результате одновременного притяжения 1 нескольким активным точкам внутри молекулы возникают напряжения, приводящие к разрыву реагирующей молекулы с образованием новых молекул и протеканию ряда последующих реакций. [c.45]

    Несмотря на то, что процессы в твердых телах и между ними с цепной точки зрения почти не изучались, распространенность у них своеобразных эстафетных цепей не вызывает сомнения. Напротив, для каталитических и хемосорбционных процессов, несмотря на довольно значительное число работ, реальность эстафетных цепей пока не удалось доказать, если не относить к этой категории участие многократно возрождающихся при катализе активных центров поверхности. [c.375]

    Гетерогенный катализ применяется главным образом при газофазном хлорировании, при котором в качестве переносчиков хлора используются каталитически активные вещества. Согласно теории Тэйлора действие их объясняется наличием активных центров, на которых протекает образование хлор-ионов. [c.153]

    Десорбция продуктов катализа (и регенерация активного центра катализатора). [c.96]

    На более раннем этапе исследования элементарные стадии переноса водорода и перестройки углеродного скелета в молекуле С-циклогексана в ходе его гидрогенолиза на нанесенных Pt-катализаторах обсуждались в работе [240]. Развита теория дефектных структур, ответственных за катализ теория позволяет оценить число активных центров, приходящихся на одну молекулу циклогексана, для разных типов катализатора. Это число лежит в пределах от 1 до 4. [c.166]

    Эти исследования — наглядный пример использования стереохимических представлений в катализе. Они свидетельствуют о возможности существования на поверхности катализаторов наборов активных центров, оптимальных для катализа определенных молекул благодаря соответствию межатомных расстояний и углов кристаллической решетки катализатора и аналогичных параметров молекул субстрата. Естественно, что увеличение или уменьшение параметров решетки приведет к изменению геометрии активных центров, а следовательно, к росту или уменьшению скорости реакции в зависимости от улучшения или ухудшения соответствия между реакционным индексом молекулы субстрата и активным центром. Позднее различие каталитической активности гладкой поверхности металлических катализаторов, ступенчатых структур, выступов и пиков на ней наглядно продемонстрировал Соморджай (см. разд. У.5). Приведенные данные являются также серьезными доводами против представлений о гидрировании вдали от поверхности катализатора [15]. Следует также специально подчеркнуть, что представления о существовании на поверхности катализатора оптимальных активных центров получили подтверждение при изучении гидрогенолиза оптически активных соединений [16—20]. [c.13]

    Гл. хт. Теория активных центров в гетерогенном катализе уравнения Аррениуса [c.336]

    По механизму физическая адсорбция аналогична конденсации пара на поверхности образующейся из него жидкости. Физическая адсорбция сравнительно малочувствительна к природе адсорбента. Хемосорбция в большинстве случаев растет с температурой из-за наличия энергии активации, физическая адсорбция всегда растет с понижением температуры. Хемосорбция может быть локализованной, когда отдельные участки энергетически, а следовательно, и адсорбционно неоднородны и адсорбированные частицы не могут перемещаться по поверхности, и нелокали-зованной, при которой адсорбированные частицы могут диффундировать по поверхности. В нелокализованной адсорбции осуществляется катализ всей поверхностью, в локализованной — катализ активными центрами. [c.182]

    Роль фермента заключается в том, что он предоставляет поверхность, к которой может прикрепляться тот или иной субстрат (молекула, подвергаемая воздействию на поверхности), и облегчает образование или разрыв связей в этой молекуле. Место на поверхности фермента, проявляющее такую активность, называется активным центром фермента. Фермент выполняет две функции распознавание и катализ. Если фермент будет без разбора связывать каждую оказавшуюся вблизи молекулу, то лишь небольшая часть времени израсходуется на катализ реакции, для которой предназначается данный фермент. Но фермент окажется точно так же бесполезным, если, связывая нужную молекулу, он не будет способствовать образованию или разрыву в ней надлежащих связей. Распознавание ферментами своих истинных субстратов осуществляется при помощи расположенных определенным образом в активном центре фермента боковых аминокислотных групп, способных взаимодействовать с молекулой субстрата электростатически, либо в результате образования водородных связей или же притяжения гидрофобных групп. Такой отбор молекул путем связывания с ферментом называется его специфичностью. [c.317]


    Все перечисленные явления приводят к тому, что в реальном кристалле число дефектов значительно превышает аналогичную величину для гипотетического идеального кристалла. Разнообразные нарушения поверхности резко увеличивают адсорбционноактивную поверхность, а следовательно, и число адсорбционных и каталитических центров. Поскольку в реальном кристалле на зушения решетки могут быть самыми различными, активные центры могут обладать разным адсорбционным нотенциа-лом, т. е. возникает энергетическая неоднородность поверхности. Псэтому естественно, что в теориях гетерогенного катализа, как правило, в той или другой степени учитывается реальное ст )оение активной поверхности. Рассмотрим три модели. [c.341]

    Согласно современным представлениям о гетерогенном катализе, активными центрами, инициирующими и вместе с тем управляющими стереоспецифическим ростом цепи, являются комплексы, одним из компонентов которых служит галогенид переходного металла (в данном случае Т1С1з), а вторым — металлорганическое соединение (например, триэтилалюминий) или его гидрид. В образовании таких промежуточных комплексов должны участвовать и молекулы мономера, до того как они будут встроены в растущую полимерную цепь. [c.30]

    Результаты работ Синфелта и сотр. [17—20] по исследованию влияния парциальных давлений этана и водорода на скорость гидрогенолиза достаточно хорошо согласуются с механизмом, предложенным Тейлором [2, 13]. При этом порядок реакции по углеводороду близок к единице и отрицателен по водороду. Полученные данные хорошо согласуются также с представлениями об интенсивном дегидрировании на поверхности, предшествующем медленной стадии разрыва С—С-св>1зей. Синфелтом [20] на примере гидрогенолиза алканов рассмотрена связь активности и селективности металлических катализаторов с положением металла в периодической системе элементов, а также некоторые вопросы определения дисперсности металлов, особенности их каталитического действия, катализ на биметаллических системах и сплавах. Отмечено, что тип активных центров на поверхности металла определяется его дисперсностью. Доля координационно ненасыщенных атомов, расположенных на ребрах и вершинах кристаллов, резко увеличивается с уменьшением размеров кристаллитов и почти равна единице в случае кластеров, включающих несколько атомов. Этим обусловлено влияние дисперсности металла на удельную активность металлических катализаторов, что проявляется для большой группы структурно-чувствительных реакций. При катализе на сплавах важное значение приобретает возможное различие составов на поверхности и в объемах сплавов. Введение в систему даже малого количества более летучего компонента часто приводит к значительному обогащению им поверхности сплава. [c.91]

    В условиях гомогенного катализа активные центры образуются при добавлении к раствору, содержащему соединение переходного металла и алкены,вос-атанавливающего агента, обычно металлоорганического соединения,и кислоты Льюиса или только кислоты Льюиса (3, ], причем было установлено, что для каждой каталитической системы существуют оптимальные соотношения как алке-на и катализатора [33], так и соединений, входящих в состав каталитической системы [33, 34]. Наличие оптимального соотношения между алкеном и катали-аатором связано, по-видимому, с цепным характером реакции метатезиса, а именно с числом элементарных актов цепного процесса, которое может выполнить данный активный центр. Изменение соотношения восстанавливающего агента и соединения переходного металла приводит к изменению не только активности каталитической системы но и направления реакции превращения алкенов. В частности, при добавлении алюминийорганического соединения к шестихлористому вольфраму сверх оптимального соотношения активюсть этой катали-ческой системы в реакции метатезиса уменьшается вплоть до полного исчезновения, а основной, становится реакция димеризации алкенов, причем в случае терминальных алкенов изменение направления реакции от метатезиса к димери-аации гроисходит при много меньших соотношениях алюминийорганическое соединение - шестихлористЕй вольфрам, чем в случае интернальных алкенов [34]. Для объяснения этого явления была предложена следующая схема образования активных центров, или метатезиса, или димеризации в зависимости от степени восстановления переходного металла  [c.47]

    Гетерогенный катализ применяется главным образом при газофазном хлорировании. В качестве катализаторов используют активированный уголь, пемзу, отбеливающие земли и т. п., пропитанные металлическими солями, особенно медными. В соответствии с теорией Тэйлора их действие основано на способности их активных центров вызывать ионизацию хлора. Гетерогенное каталитическое хлорирование протекает по криптоионному механизму и нечувствительно к обрыву цепи, особенно если оп вызывается кислородом. Благодаря этой нечувствительности к кислороду становится возможной разработка такого процесса хлорирования, при котором хлор будет использоваться целиком именно потому, что процесс будет проходить в присутствии кислорода. При этом применяются такие контактные массы, которые делают возможным превращение образовавшегося хлористого водорода под воздействием кислорода в воду и хлор [,5]. [c.113]

    Эта зависимость тем более удивительна, что, казалось бы, никакой связи между величинами С и быть не должно. Ведь Е связано с энергетической природой активного центра, а С, с точностью до множителя пропорциональности, есть число активных центров на единице поверхности катализатора. До сих пор не дано полного теоретического обоснования этой интересной опытной закономерности . Пожалуй, наиболее правдоподобно звучит объяснение, данное Швабом на основании теории активных центров. Если катализ осуществляют только определенные активные центры, обладающие различным энергетическим потенциалом (т. е. катализ идет на наборе активных центров с разными энергиями активации на них), то по статистически-термо-дннамическим соображениям число их должно увеличиваться с уменьшением энергетического потенциала. На поверхности катализатора, обладающего по условиям приготовления центрами высокой активности, только эти центры и будут участвовать в процессе на поверхности же катализатора, пе имеющего центров высокой активности, катализ поведут менее активные, но более многочисленные центры. Следовательно, чем больше величина Е для данного катализатора из серии катализаторов с разной активностью центров, тем большего значения С следует ожидать. Поскольку между числом центров и их энергий наиболее вероятна экспоненциальная зависимость, качественно объяснимо и эмпирическое уравнение (XIII, 6). [c.336]

    Каковы бы ни были конкретные взгляды, на механизм катализа, обычно признается существование активных центров на поверхности катализатора. Однако имеется и другая точка зрения. Например, Г. К. Боресков считает, что активных центров не существует и каталитическая активность является свойством, присущим всей поверхности твердого тела. Отсюда следует, что активность прямо пропорциональна общей поверхности катализатора и зависит только от его химического состава. Поэтому катализаторы одинакового химического состава должны иметь постоянную удельную активность. Для некоторых металличв" ских катализаторов такая точка зрения подтверждается опытч [c.338]

    Эти аномалии показывают, что истинный механизм катализа сложней и многообразней простой схемы мультиплетной теории. Однако это не снижает значения этой теории, так как в ней впервые серьезно поставлен вопрос о структуре и составе активного центра гетерогенного катализатора. [c.346]

    Относительно недавно установлено, что пассивирующая пленка не обязательно должна быть сплошной. Так, появление на поверхности платины кислорода, занимающего лишь несколько процентов общей поверхности металла, приводит к почти полному прекращению анодного растворения платины в (юляной кислоте. Можно предположить, что анодное растворение и вообще взаимодействие металла с агрессивными средами происходит не на всей поверхности, а лишь на отюсительно небольшом числе малых участков поверхности, т. е предста-нление об активных центрах, имеющее такое большое значение в теории катализа, сохраняется и в этом случае. [c.637]

    Наиболее распространен катализ через распад гидроперок-сида на поверхности катализатора. Образующиеся при цепном окислении углеводорода молекулы гндропероксида диффундируют к поверхности катализатора, адсорбируются на активных центрах и распадаются на поверхности 5 с разрывом по О—О-связи. Образовавшийся радикал R0 выходит в объем и вызывает цепное гомогенное окисление [329, 330] [c.205]

    Хлорид алюминия, А1С1з, играет роль катализатора в реакции алкили-рования бензола, в результате которой образуются его производные с алкильными боковыми цепями. Важным классом биологических катализаторов являются белковые молекулы, называемые ферментами. Эти молекулы имеют ла своей поверхности участки, называемые активными центрами, на которых осуществляется катализ. К активным центрам ферментов часто присоединяются атомы переходных металлов, которые становятся важными участниками катализа. Мы познакомимся с примером ферментативного катализа в разд. 21-10. [c.305]


Смотреть страницы где упоминается термин Катализ активными центрами: [c.58]    [c.361]    [c.249]    [c.12]    [c.335]   
Кинетика и катализ (1963) -- [ c.181 , c.182 , c.184 , c.222 , c.223 , c.249 ]




ПОИСК





Смотрите так же термины и статьи:

Активность Активные центры

Активные центры адсорбции и катализа

Активные центры в гомогенном катализе. Активация и дезактивация

Активный центр

Вероятности цепей последовательных положительных и отрицательных изменений абсолютной каталитической активности центра катализа

Катализ гетерогенный, активные центры

Катализ, теории активных центров

МЕХАНИЗМ ФЕРМЕНТАТИВНОГО КАТАЛИЗА Строение и важнейшие свойства ферментов и их активных центров

Особенности структурной организации активных центров ферментов и щелевой эффект в катализе

Ранние теории катализа и теория активных центров Тейлора

Теория активных центров в гетерогенном катализе

Теория катализа на базе активных центров

Тэйлор адсорбционная теория катализа активированная адсорбция активные центры

Тэйлор адсорбционная теория катализа активированная адсорбция активные центры разложение Н в воде энергия активации

Ферменты кислотно-основного катализа без участия имидазола в активных центрах



© 2025 chem21.info Реклама на сайте