Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбционное равновесие на неоднородных поверхностях

    Практическое значение имеет развитие представлений о механизме адсорбции па неоднородных поверхностях. Эффектом неоднородности могут быть объяснены основные закономерности реального адсорбированного слоя характер адсорбированного равновесия (изотермы адсорбции), кинетика адсорбционных процессов, характер изменений теплот адсорбции и энергии активации. [c.151]


    В зависимости от характера распределения участков но теп-лотам адсорбции и энергиям активации на неоднородных поверхностях реализуется тот или иной тип адсорбционного равновесия. Основные используемые для практических расчетов изотермы, изобары и дифференциальные теплоты адсорбции на неоднородных поверхностях систематизированы в табл. 3.2 [71]. [c.151]

    Кинетика реакций на неоднородной поверхности. При невыполнении одного из постулатов Лангмюра (см. раздел 1.2) вид изотермы адсорбции меняется. Подставляя в формулы (11.88)—(П.90) уравнение любой изотермы адсорбции, отличной от лангмюровской, получаем видоизмененные кинетические зависимости, характеризующие процесс на неоднородной поверхности или при взаимодействии молекул в адсорбированном слое. Если адсорбционное равновесие не достигается, соответствующие неравновесные зависимости получают, заменяя уравнения изотерм адсорбции зависимостями степеней заполнения поверхности от концентраций реагентов в объеме, определенными из условия баланса потоков адсорбции, собственно реакции и десорбции. [c.85]

    На неоднородной поверхности адсорбционное равновесие может быть описано логарифмической или степенной изотермой адсорбции [c.78]

    Для адсорбционных равновесий большое значение имеет функция распределения по теплотам адсорбции Q. Вопрос усложняется тем, что для неоднородных поверхностей изотермы адсорбции не подчиняются закону изотермы Лэнгмюра, но представляют при разных р(Е) (функции распределения ) параболические логарифмические формы. Дополнительной сложностью является 1) необходимость учета отталкивания адсорбированных молекул, что особо [c.157]

    Статические методы измерения адсорбционных равновесий (изотерм или изостер адсорбции) обладают тем существенным преимуществом, что, используя их, можно очищать поверхность адсорбента в вакууме и как угодно долго дожидаться установления адсорбционного равновесия. Однако эти методы встречают и существенные затруднения. Во-первых, их трудно применить для изучения весьма важной области очень малых (нулевых) заполнений поверхности, когда межмолекулярным взаимодействием адсорбат — адсорбат можно пренебречь. Поэтому для определения такой термодинамической характеристики межмолекулярного взаимодействия адсорбат— адсорбент, как константа Генри, приходится экстраполировать к нулевому заполнению изотермы адсорбции, измеренные при более высоких заполнениях поверхности адсорбента. Эта экстраполяция связана с рядом затруднений. При сравнительно низких температурах, при которых обычно проводятся статические измерения изотерм адсорбции, сильнее сказывается влияние неоднородности поверхности твердого тела. Во-вторых, обычными статическими методами при невысоких температурах можно изучать адсорбцию лишь небольшого количества достаточно летучих. и простых по структуре молекул веществ с небольшой молекулярной массой. В-третьих, применение статических методов, особенно при работе с труднолетучими веществами, требует высокой чистоты этих веществ, так как летучие примеси могут привести к ошиб- [c.156]


    Т) этой и двух последующих главах рассмотрены равновесие адсорбции и кинетика элементарных гетерогенных каталитических реакций. Факторы, определяющие закономерности адсорбции и гетерогенного катализа, весьма разнообразны и часто с трудом поддаются учету. Среди них решающими являются число мест, которые занимает адсорбированная частица на поверхности конфигурация активированных комплексов неоднородность поверхности катализатора взаимное влияние адсорбированных частиц и коллективное взаимодействие адсорбированных частиц с поверхностью. При анализе равновесия применены методы статистической физики. При обсуждении кинетики использована теория абсолютных скоростей реакций [32], которая несмотря на не вполне последовательный характер исходных положений дает возможность правильно (как качественно, так зачастую и количественно) описать кинетические закономерности для подавляющей части химических превращений. Кроме этих строгих методов, для характеристики эффектов взаимодействия применена также полуэмпирическая модель. Теория абсолютных скоростей есть но существу равновесная теория, поэтому удобно исследовать равновесие и кинетику совместно. Второй довод в пользу такого рассмотрения заключается в том, что тип адсорбции частиц и активированных комплексов определяет и адсорбционные изотермы, и кинетические закономерности. [c.53]

    Трактовка неоднородности поверхности, развиваемая Темкиным, также основана на представлении поверхности как совокупности микроскопических участков, каждый из которых однороден, т. е. содержит адсорбционные центры, характеризуемые одной и той же теплотой адсорбции Я и, следовательно, одной и той же константой адсорбционного равновесия Ъ и одной и той же кажущейся константой скорости реакции к. Однако в отличие от теории Рогинского, приводящей в зависимости от вида функции распределения теплот адсорбции к различным изотермам, здесь используется только [c.81]

    Эти константы имеют ясный термодинамический смысл. Это либо константы равновесия реакции двумерной ассоциации с образованием на поверхности кратных комплексов [5], либо это константы взаимодействия в уравнении состояния двумерного слоя, нанример константы а.2 и Ьд двумерного уравнения состояния Ван-дер-Ваальса [6—9]. При адсорбции на неоднородной поверхности эти константы отражают как взаимодействие адсорбат—адсорбат, так и неравноценность различных мест на поверхности [10—12]. Для всех этих констант, как и для константы Генри, может быть найдена зависимость от температуры. В этом случае можно получить уравнение вида / (а, р, Т) = О, которое позволяет найти зависимость величины адсорбции а не только от р, но и от Г [13—15]. Первая производная / р, Т) этой функции по температуре при постоянной а дает зависимость Q от занолнения, а вторая производная fa р, Т) — зависимость теплоемкости от занолнения. Таким образом, применение приближенных уравнений адсорбционного равновесия дает возможность рассчитать основные термодинамические характеристики адсорбции в широкой области заполнений первого слоя, а в благоприятных случаях — и при переходе к полимолекулярной адсорбции. В дальнейшем вычисления основных адсорбционных характеристик с помощью функции / (а, р, Г) = О и ее производных проводятся в нулевом прибли кении, т. е. при допущении независимости Q от Т. [c.367]

    И. Лэнгмюр [391] уже в первых работах по теории адсорбции отметил возможность существования кристаллических и аморфных поверхностей с местами, обладающими разным числом остаточных валентностей. Он также указал путь рассмотрения адсорбционного равновесия на таких неоднородных поверхностях. [c.85]

    Адсорбционное равновесие на неоднородных поверхностях [c.88]

    Первое статистическое рассмотрение адсорбционного равновесия на неоднородных поверхностях в общем виде было, дано И. Лэнгмюром [391]. Для кристаллической поверхности (согласно терминологии Лэнгмюра) с небольшим числом разных групп участков или их прерывным изменением он выразил степень покрытия как сумму  [c.90]

    Таким образом, характер адсорбционного равновесия в области малых заполнений поверхности не изменяется при переходе от процесса в идеально адсорбированном слое к процессу на неоднородной поверхности. [c.92]

    Таким образом, форма зависимости адсорбционного равновесия в областях малых и больших заполнений поверхности не должна различаться в идеальном адсорбированном слое и на неоднородной поверхности, независимо от характера изотерм адсорбции. Следовательно, критерием выполнимости уравнений изотерм адсорбции во всем интервале степеней покрытия поверхности может служить переход этих уравнений в аналогичные для разных случаев выражения, соответственно, для больших и малых величин 0. [c.92]


    Подробное рассмотрение общих и частных закономерностей адсорбционного равновесия и кинетики адсорбции на неоднородных поверхностях дано С. 3. Рогинским [54]. Кроме приведенных законов распределения и отвечающих им уравнений изотерм адсорбции, возможны, например, отрицательно-степенная изотерма [422], также соответствующая экспоненциальному распределению, и ряд других распределений, подробно проанализированных С. 3. Рогинским и найденных в работах его лаборатории [401]. В табл. 2, заимствованной в основном из монографии [54], дана сводка основных распределений. [c.101]

    В нем можно принять, что сжимаемость адсорбированного слоя, характеризуемая величиной его парциального молярного объема Va, не зависит от места неоднородной поверхности [336]. Тогда при интегрировании выражений для адсорбционного равновесия по всей поверхности, от s =0 до 5=1, получаются те же уравнения изотерм адсорбции, аналогичные приведенным выше, с тем различием, что в по стоянные входит множитель [c.102]

    Поэтому кинетику адсорбционных процессов на равномерно-неоднородной поверхности можно рассматривать как частный случай кинетики на экспоненциально-неоднородной поверхности при п- оо, аналогично взаимоотношению закономерностей адсорбционного равновесия. [c.114]

    Мы рассматривали до сих пор область средних заполнений поверхности, в которой должны наблюдаться резкие отличия от кинетики в идеальном адсорбированном слое. Такие различия не имеют места в крайних областях — области Генри и области насыщений. В этих случаях, как нетрудно убедиться, кинетические уравнения адсорбции и десорбции по форме аналогичны соответствующим уравнениям для идеального адсорбированного слоя, отличаясь только множителями в константах, учитывающих характер неоднородности поверхности. Таким образом, как и для адсорбционного равновесия, независимо от характера неоднородности поверхности, закономерности кинетики адсорбции и десорбции в крайних областях по форме не должны отличаться от закономерностей идеального адсорбированного слоя. [c.115]

    Как видно, закономерности адсорбционного равновесия и кинетики адсорбции на неоднородных поверхностях в области средних заполнений тесно увязаны между собой, причем закономерности адсорбционного равновесия определяют характер кинетики адсорбции и десорбции. [c.115]

    С помощью точного метода был проанализирован ряд случаев адсорбционного равновесия [133] и кинетики процессов [422] на неоднородных поверхностях. Так, например, рассмотрение изотермы [439]  [c.120]

    Как было видно из изложенного, кинетические закономерности адсорбционных процессов существенно зависят от характера адсорбционного равновесия. Получающиеся кинетические зависимости обычно отличаются от уравнений для идеального адсорбированного слоя. Анализ этих уравнений позволяет найти конкретные функции, характеризующие неоднородность поверхности. [c.121]

    Ш. м. Коган и В. Б. Сандомирский [284, 285] трактуют адсорбционное равновесие на полупроводниках с точки зрения разных возможностей положения уровня Ферми и степени вырождения состояний адсорбированных частиц. Из таких предпосылок авторы также получают логарифмическую и степенную изотермы адсорбции без учета неоднородности поверхности. [c.133]

    Итак, кинетические зависимости реакций на неоднородных поверхностях отвечают определенному характеру адсорбционного равновесия, что вытекает из соответствующих выражений изотерм адсорбции и соотнощения линейности. [c.205]

    С равен 0,90, но отношение коэффициентов активности при этих условиях равно 1,09, поэтому к = , 02к [438], т. е. зависимость от давления можно не учитывать. Таким образом, здесь высокие давления не изменяют кинетические закономерности реакции за счет отклонений от законов идеальных газов, но могут влиять на скорость процесса. Специфика влияния давления в отношении реакций на неоднородных поверхностях в данном случае заключается в том, что реакция может сдвигаться с одних мест поверхности на другие, а в множителях, учитывающих сжимаемость адсорбированного слоя, появляются коэффициенты из соотношения линейности. В остальном влияние давления должно быть таким же, как и в случае реакций в идеальных адсорбированных слоях (1 лияние на величины констант скорости и констант адсорбционного равновесия, появление в кинетических уравнениях величин коэффициентов активности, изменения степени покрытия поверхности катализатора, относительная адсорбируемость компонентов, реакции, удаление или приближение к равновесию, изменение лимитирующей стадии). [c.246]

    Протекание реакции в области средних заполнений поверхности катализатора автоматически приводит к тому, что некоторые места поверхности станут оптимальными. Действительно, так как условием осуществления области средних заполнений является наличие одних мест, практически полностью покрытых и других, практически незаполненных при данном р, то, очевидно, имеются места, для которых а, близка к 7г- В зависимости от доли этих мест, определяемой на равномерно неоднородной поверхности величиной степени неоднородности f, катализатор будет более или менее оптимальным. Следовательно, различие суммарной скорости данной реакции, идущей в области средних заполнений равномерно-неоднородной поверхности разных катализаторов (при одинаковом механизме), должно быть обусловлено в основном значениями величин [. Из рассмотрения уравнения (У.273) видно, что числитель его не зависит от максимальной адсорбционной способности данной поверхности в силу соотношений (XI. 112) и (XI.ИЗ) (при а = [Вгг 1/2). а определяется значениями Сг и Сц [305]. Знаменатель уравнения (У.273) также не зависит от характеристик максимальной адсорбционной способности поверхности, что видно из уравнения (VII. 162). Следовательно, скорость данной реакции определяется общими для всей поверхности величинами /, Ох и Оц. Аналогичный вывод может быть сделан и из рассмотрения скорости реакции вдали от равновесия из уравнений (ХП.36) и (ХП.37) и соотношений (XI. 112) и (XI.ИЗ). Если при переходе от одной каталитической поверхности к другой величины С1 и Оц сохраняют соответственно свое значение, то различия в скорости данной реакции и будут обусловлены только величинами Такой случай отвечает выполнению соотношения линейности с теми же значениями постоянных на разных поверхностях. [c.476]

    Определение неоднородности поверхности дифференциальным методом осуществляется следующим образом. В сосуд с исследуемым катализатором последовательно вводят две порции газа различного изотопного состава. После достижения адсорбционного равновесия периодическим нагреванием десорбируют отдельные порции газа и подвергают их изотопному анализу. Если изотопный состав десорбированного газа изменяется от порции к порции, то это свидетельствует о неоднородности поверхности катализатора.,  [c.174]

    Способ перехода от системы уравнений для однородных поверхностей к кинетической схеме для энергетически неоднородной поверхности сам по себе достаточно прост. Он полностью повторяет ход рассуждений об адсорбционном равновесий на неоднородной поверхности, изложенный в 4 гл. II. Однако предварительно нужно более подробно рассмотреть вопрос о том, как изменение величин, относящихся к адсорбции реагентов, связывается в катализе. Без этого формальное построение соответствующей кинетической схемы не имеет большого значения трудность проблемы определяется совсем не отсутствием хороших кинетических уравнений — они есть, — а неясностью физического смысла получаемых соотношений. Построение гибких кинетических схем, способных объяснить практически любой вид кинетических уравнений -с помощью не определяемых на опыте функций р(Я) при произвольной связи между величинами, относящимися к адсорбции и катализу, не должно маскировать бедность их физического содержания или [c.51]

    Пол . чены значения энергий связи поверхности металлических катализаторов с элементами органических соединений — Н, D, С, О, N, определенные методом адсорбционно-химических равновесий или предложенным нами вариантом кинетического метода на основе реакции пара-орто-конверсии. Величины однотипных энергий связи в большинстве случаев мало изменяются при переходе от одного образца катализатора к другому и мало зависят от природы рассмотренных металлов. Высказано предположение, что на неоднородных поверхностях катализаторов реакции осуществляются преимущественно на участках с оптимальными значениями энергий связи, интервалы которых на разных катализаторах близки, а относительная доля — различна. [c.350]

    Метод Росса и Оливье [И] можно использовать лишь для таких систем, для которых можно считать довольно правильными сделанные этими авторами допущения. Тем не менее этот метод полезен для обработки экспериментальных изотерм адсорбции на близких к однородным реальных адсорбентах с целью оценки степени неоднородности поверхности и получения из этих экспериментальных изотерм адсорбции констант, характеризующих адсорбционное равновесие на соответствующих однородных поверхностях. По мере развития комплексного применения новых химических и физических методов количественного изучения состава, структуры и состояния реальных поверхностей твердых тел можно будет в конкретных случаях уточнить многие из сделанных в этом методе допуще- [c.176]

    Реальный адсорбированный слой. Опыт показывает, что имеют место отклонения от свойств идеального адсорбированного слоя. Обнаружено, что для многих систем теплота адсорбции уменьшается с увеличением степени заполнения поверхности, и адсорбционное равновесие не может быть выражено изотермой Ленгмюра. В таких случаях принято говорить о реальных адсорбированных слоях [19]. Присущие им закономерности могут быть объяснены либо эффектом взаимного влияния частиц, адсорбированных на однородной поверхности, либо энергетической неоднородностью поверхности. В первом случае уменьшение теплоты адсорбции данного вещества с эостом его поверхностной концентрации объясняется тем, что по мере роста заполнения поверхности увеличивается взаимное отталкивание частиц, приводящее к постепенному ослаблению их связи с поверхностью. Во втором случае поверхность катализатора представляется в виде набора участков с разным адсорбционным потенциалом. При адсорбции данного вещества сначала заполняются участки поверхности, характеризующиеся наибольшей энергией связи с адсорбатом. [c.27]

    Это уравнение можно проинтегрировать в предположении, что при переходе от одного места неоднородной поверхности к другому значения коэффициентов скоростей связаны с соответствующими константами равновесия соотношениями типа Бернстеда [19]. Для адсорбционно-десорбционной стадии это означает, что [c.30]

    По уравнению (13а) было сделано много численных расчетов адсорбционного равновесия, в частности для инертных газов и СвНв на гра( )и-тированной саже [12], N6 и Аг на цеолите КаА [21] и Аг на грани (100) кристалла КС1 [22]. Можно отметить, что закон Генри при р О применим независимо от того, является ли адсорбция подвижной или локализованной, и справедлив как для однородной, так и для неоднородной поверхности [5]. [c.27]

    Одной из задач молекулярной теории адсорбции является вычисление физико-химических характеристик (констант адсорбционного равновесия, теплот и энтропий адсорбции, теплоемкости адсорбата) на основании свойств молекулы адсорбата и свойств адсорбента. Эта задача может быть решена методами молекулярной статистики с помош,ью теории молекулярного взаимодействия лишь в простейших случаях (литературу см. в [1, 2]). Отклонения от предельного закона Генри связаны либо с притя жением адсорбат—адсорбат, либо с отталкиванием адсорбированных моле кул друг от друга или с неоднородностью поверхности адсорбента. Влияние этих факторов пока не охарактеризовано количественно с помощью молекулярной теории. Поэтому представляют теоретический интерес и практическую ценность нонытки расчета этих термодинамических функций с помощью приближенных уравнений адсорбционного равновесия [3—12], содержащих константы равновесия для различных вкладов взаимодействий в адсорбционных системах, в частности, для взаимодействия адсорбат адсорбат. [c.367]

    Т е м к и н М. и Л е в и ч В., Адсорбционное равновесие на неоднородных поверхностях. Журн. физической химии, 20, № 12, стр. I44I, 1946. [c.446]

    Тбрмодияам Ическая теория, развитая для физической адсорбции (гл. XIV, разд. Х1У-12), конечно, прим-енима к хемосорбции. Как и в физической адсорбции, в хемосорбции термодинамичедкие уравнения в основн.о м служат для расчета теплот адсорбции, т. е. для нахождения 8 из данных, полученных при различных температурах. Найденные таким способом значения qst должны совпадать с калориметрическими дифференциальными теплотами адсорбции, отличаясь от последних не больше чем на ЯТ, вероятно, даже для неоднородных поверхностей. Правда, при исследовании хемосорбции всегда существует опасность несоответствия экспериментальных данных адсорбционному равновесию. Рассматриваемый в разд. ХУ-5 критерий Бика для поверхностной подвижности применим для предельной ситуации, когда только часть поверхности находится в равновесии с газовой фазой. Напомним, что в таких случаях величины не имеют ясного физического смысла. [c.515]

    Пользуясь теорией, разработанной для поверхностей с однородными активными участками, часто не удается объяснить некоторые свойства реальных катализаторов, например наблюдаемое во многих случаях значительное отклонение не только кинетики каталитических реакций, но и изотерм адсорбции от теоретически ожидаемых. Эти отклонения, как теперь удалось установить, вызваны в большинстве случаев неоднородностью активных участков поверхности. Наиболее существенные успехи в разработке и математической формулировке теории процессов, протекающих на неоднородных поверхностях, достигнуты в последние годы советскими исследователями. Я. Б. Зельдович разработал рациональную статистическую теорию изотермы реального процесса адсорбции, которая дает возможность получить изотерму Фрейндлиха при больцмановском типе распределения отдельных участков поверхности по их активностям. С. Ю. Елович и Ф. Ф. Харахорин экспериментально доказали, что экспененциальное уравнение скорости активированной адсорбции, предложенное Я. Б. Зельдовичем и С. 3. Рогинским, соответствует определенной функции распределения участков поверхности по теплотам активации. С. 3. Рогинским разработана статическая теория каталитической активности и отравления катализаторов, кроме того, в общем виде рассмотрена проблема функций распределения участков поверхности по активности в связи с разработкой теории каталитического процесса 1. Большое принципиальное значение имеет разработанная М. П. Темкиным теория адсорбции и катализа на поверхностях, отличающихся равномерным распределением участков, на которые можно разделить поверхность реальных контактов, по их величинам теплот адсорбции и теплот активированной адсорбции. Разрабатывая термодинамику адсорбционного равновесия, М. И. Темкин дал рациональное толкование постоянной Ь уравнения Ленгмюра, связав ее простым соотношением с теплотой адсорбции. Серьезным достижением следует считать логарифмическую изотерму адсорбции, предложенную А. Н. Фрумкиным и А. И. Шлыгиным, которая позволяет теоретически обосновать возможность дробных порядков в кинетике каталитических реакций. [c.9]

    Таким образом, независимо от характера неоднородности поверхности в области малых заполнений должен выполняться закон Генри, как и для адсорбционного равновесия на однородной поверхности. Отличие реального адсорбированного слоя от идеального, с этой точки зрения, сводится к различиям в величине коэффициента пропорциональности уравиения (И1.62). Если o(s)= onst (т. е. поверхность однородна), то а = а — в соответствии с уравнением (П1.13). Различия в характере неоднородности поверхности в области малых заполнений поверхности могут сводиться лищь к разным значениям коэффициента а, но с сохранением вида зависимости, отвечающей закону Генри. [c.92]

    Задача анализа адсорбционного равновесия на неоднородных поверхностях сводится к нахождению функций 6(/o)r= onst (уравнений изотерм адсорбции), а также 6(T )p= onst (изобар адсорбции) и p(r)e= onst (изостер адсорбции) при известном законе распределения по теплотам адсорбции (q) и, напротив, к выяснению, какому закону распределения q) отвечает тот или другой вид функциональных зависимостей О (р), 0 (Г) и р (Т). [c.118]

    Рассматривая в этом и предыдущих параграфах количественнук> трактовку закономерностей равновесия и кинетики адсорбционных процессов на неоднородных поверхностях, мы ограничились случаями, наиболее часто встречающимися на опыте, которые будут в дальнейшем использованы при рассмотрении кинетических уравнений каталитических реакций. [c.121]

    Теория каталитических процессов на неоднородных поверхностях, для наиболее распространенных случаев, увязывающая вместе вопросы адсорбционного равновесия, кинетики адсорбции и кинетики реакций,, была развита М. И. Темкиным [331, 422, 436]. Значительный вклад в развитие этого нонроса был внесен С. 3. Рогинским, подробно проанализировавшим на основе своего оригинального метода разнообразные случаи закономерностей процессов на неоднородных поверхностях, что суммировано им в монографии [54]. [c.174]

    Последнее обусловлено стадийным протеканием процесса и установлением адсорбционно-химического равновесия быстрых стадий, как это быхо подробно рассмотрено в предыдущей главе. Такая особенность кинетики реакций с торможением продуктами была впервые отмечена на примере процессов на неоднородных поверхностях [436], в частности для синтеза аммиака [436, 501]. [c.207]

    Относительные адсорбционные коэффициенты (т. е. отношение г/ =ау/а1) могут быть определены из данных по адсорбционному равновесию соответствующих бинарных смесей. Г. В. Исагулянц, А. А. Баландин и Е. И. Попов [793] предложили для определения величин относительных адсорбционных коэффициентов простой метод изотопного разбавления. Этот метод может быть справедлив лишь для идеального адсорбированного слоя. Нахождение значений адсорбционных коэффициентов, из кинетических данных в принципе должно иметь преимущества перед их определением из изотерм адсорбции, поскольку величины, полученные из кинетических уравнений, могут характеризовать адсорбцию компонентов реакции непосредственно в ходе каталитического процесса. Однако следует учитывать, что характер этих величин зависит от вида кинетического уравнения. Так, в уравнения кинетики реакций на неоднородных поверхностях, как отмечалось в главе VII, могут входить величины, характеризующие места поверхности с наибольщей ажорбционной снособностью (на которых скорость реакции мала), а не места с наибольшей каталитической активностью. [c.379]


Смотреть страницы где упоминается термин Адсорбционное равновесие на неоднородных поверхностях: [c.152]    [c.24]    [c.113]    [c.255]    [c.27]   
Смотреть главы в:

Введение в кинетику гетерогенных каталитических реакций -> Адсорбционное равновесие на неоднородных поверхностях




ПОИСК





Смотрите так же термины и статьи:

Равновесие адсорбционное

Равновесие на неоднородных поверхностях



© 2025 chem21.info Реклама на сайте