Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферментативный специфичность

    В заключение отметим чтобы модель фермента была действующей, она должна отвечать ряду критериев, характерных для ферментативного катализа, в том числе обладать субстратной специфичностью, т. е, селективно связывать субстрат. Каталитическая реакция, моделирующая ферментативный процесс, должна также подчиняться кинетике Михаэлиса — Ментен (явление насыщения субстратом) при этом должна увеличиваться скорость реакции и осуществляться би- и/или полифункциональный катализ [348], [c.265]


    Эта реакция в такой же степени специфична, как и действие ферментов. Антитела, защищающие организм, например, от дифтерийного токсина, неэффективны против стрептококковых инфекций. Антитело способно распознавать различия, существующие между антигенами. Специфичность указанной реакции, точно так же как и ферментативная специфичность, объясняется теорией замка и ключа (фиг. 95). [c.349]

    Монометрические датчики на основе ферментов отличаются высокой селективностью, обусловленной уникальной специфичностью ферментов по отношению к ферментативной реакции и к субстрату. Каждый фермент катализирует лишь определенный тип реакции. Поэтому создание ферментных электродов откры- [c.57]

    Для ферментативного катализа характерны высокая субстратная специфичность (в ряде случаев стереоспецифичность), селективность по отношению к определенным связям субстрата и способность к тонкому регулированию активности под действием эффекторов (активаторов и ингибиторов). [c.185]

    Первым по значимости методом определения структуры белков в нативном кристаллическом состоянии, несомненно, является рентгеноструктурный анализ. Действительно, сейчас даже трудно себе представить какой-либо другой метод, с помощью которого было бы можно определять тысячи параметров, необходимых для решения этой труднейшей, но интереснейшей задачи. Для изучения белков в растворах необходимы, однако, другие методы. В прошлом для определения конформаций белков и конформационных изменений, мест связывания субстрата с кофактором, изучения ферментативной специфичности и решения многих других вопросов, касающихся структуры и функции белков, применялись самые разнообразные химические и физические способы. С их помощью получен большой объем сведений. [c.347]

    Субстратная специфичность проявляется в бесчисленных формах и, как будет указано ниже, лежит в основе классификации ферментов. Имеет значение то, что различные ферменты проявляют по отношению к соответствующим субстратам различные степени специфичности. Мы остановимся на трех степенях или типах ферментативной специфичности. Для иллюстрации явления рассмотрим схематизированную реакцию гидролиза [c.796]

    Основная причина того, что гипотезе напряжений и деформаций не уделяли должного внимания, заключается в том, что трудно найти экспериментальные методы, чтобы ее подтвердить или отвергнуть. В настоящее время нет строгих экспериментальных свидетельств в пользу того, что напряжения и деформации играют важную роль в ферментативном катализе, однако можно показать, что эти факторы почти определенно имеют место в катализе, осуществляемом ферментами. Существуют два наиболее важных теоретических соображения, указывающих на то, что гипотеза напряжений и деформаций заслуживает более пристального внимания во-первых, трудно удовлетворительно объяснить природу ферментативного катализа некоторых реакций при помощи каких-либо других известных механизмов во-вторых, известен факт, что ферментативная специфичность чаще всего проявляется в максимальных скоростях процесса, а не в связывании субстратов ферментом, как можно было ожидать. Кроме того, необходимо найти объяснение тому факту, что ферменты представляют собой большие молекулы определенной структуры, которая должна быть интактна, чтобы проявилась каталитическая активность. [c.224]


    Ферменты катализируют реакции, происходящие в живом организме, т. е. управляют его химической деятельностью. В отличие от неорганических катализаторов ферменты обладают высокой субстратной специфичностью. Еще в 1894 г. Э. Фишер выдвинул принцип строгой ферментативной специфичности каждый фермент должен подходить к субстрату, как ключ к отпираемому замку. Однако в последнее время соответствие фермент — субстрат рассматривают не как статическое соотношение неподвижных замка и ключа, а как динамическую подгонку одного к другому [c.217]

    Попытка обобщить данный материал сделана в настоящей книге, которая представляет собой логическое продолжение первой части, опубликованной ранее отдельным томом и посвященной анализу специфичности и кинетических аспектов действия ферментов на относительно простые субстраты, такие как алифатические и ароматические спирты и альдегиды, производные карбоновых кислот, замещенные аминокислоты и их производные (не выше ди- или три-пептидов). Главное внимание в первой части книги уделялось характеру фермент-субстрат ных взаимодействий на достаточно ограниченных участках активного центра и кинетическим проявлениям этих взаимодействий. В основе первой части книги лежит экспериментальный материал, полученный при изучении специфичности, кинетики и механизмов действия цинк- и кобальткарбоксипеп-тидазы, химотрипсина и трипсина из поджелудочной железы быка, алкогольде-гидрогепаз нз печени человека и лошади и пенициллинамидазы бактериального происхождения. Итогом первой части книги явились обобщение и формулировка кинетико-термодинамических принципов субстратной специфичности ферментативного катализа. [c.4]

    Вообще говоря, существуют еще три уровня специфического узнавания субстратов в ферментативном катализе. Давайте рассмотрим пептидную связь в полипептидной цепи. Боковая цепь Рг определяет нормальную специфичность фермента. Для а-химотрипсина Нг — это ароматическая боковая цепь, а гидрофобная полость (ароматическая щель) в активном центре предназначена для взаимодействия с аминокислотой, узнаваемой ферментом. Такую избирательность называют первичной структурной специфичностью. [c.235]

    Высокая химическая специфичность. В отличие от химических катализаторов ферменты обладают значительно большей специфичностью каждый и.я них действует лишь на строго определенную реакцию или группу реакций, протекающих в организме. Предполагается, что в организме человека одновременно функционирует около 1000 различных ферментов. При этом они образуют сложные ферментативные системы, которые обеспечивают в живой клетке протекание целого ряда строго последовательных и согласованных между собой реакций. Если бы ферменты не обладали столь высокой специфичностью, это привело бы к быстрому распаду всех веществ в клетках и к гибели всего организма. [c.167]

    Объяснять на основании известных вам сведений о белках следующие характеристики ферментов специфичность, температурная зависимость ферментативной активности, подобная указанной на рис. 25.6, ингибирование. [c.465]

    Ферментативный катализ тесно связан с жизнедеятельностью животных и растений. Все жизненно важные процессы в организмах управляются органическими катализаторами, называемыми ферментами или энзимами. Для ферментативного катализа характерны высокая специфичность и каталитическая активность, достигаемые при невысоких температурах и давлениях. В настоящее время ферменты все больше используются в промышленности. [c.362]

    Высокая каталитическая активность и специфичность ферментов объясняются слитным механизмом каталитического процесса и сложным строением молекул ферментов с наличием ряда адсорбционных центров, обеспечивающих оптимальную ориентацию молекул реагентов по отношению к каталитически активным группам фермента. Молекулы реагентов образуют с активными центрами фермента цепочки перераспределения связей с одновременным сопряжением нескольких этапов химического превращения и значительной компенсацией энергии разрыва старых связей. Следует заметить, что теория ферментативных реакций еще только создаётся, а в механизме действия ферментов много неясного. [c.363]

    Иначе говоря, величины кажущихся свободных энергий взаимодействия сайтов, которые могут быть определены с помощью измерения относительных частот расщепления связей, включают инкремент, связанный со специфичностью ферментативного катализа, а именно с влиянием степени полимеризации субстрата на скорость ферментативного гидролиза. [c.69]

    В сложных ферментах функцию активных центров выполняют преимущественно простетические группы, при потере которых ферменты лишаются своей активности, но вместе с тем и белковый компонент отдельными участками своей молекулы влияет на эффективность и специфичность ферментативного действия. [c.106]


    Активирующие ферменты реагируют только с 1--аминокислотами (отвергая О-аминокислоты), однако они способны активировать неприродные аналоги аминокислот и вводить их тем самым в белок. Таким образом, на этой стадии биосицтеза особая ферментативная специфичность не наблюдается. [c.264]

    Выделенные анионные изопероксидазы вирозных растений существенно отличаются от таких же изоэнзимов контрольных растений по ферментативной специфичности при взаимодействии с субстратами естественной и искусственной природы (см. 6.4). У них повыщенное сродство к субстратам, что должно иметь соответствующий контроль со стороны клетки. Если в начале заболевания, при образовании некрозов, индукторами [c.94]

    В заключение следует отметить, что в этой главе представлены различные модели ферментативных механизмов, в которых участвуют ионы металлов. Показано, что реакции, катализируемые ме-таллофермеитами или ферментами, активированными ионами металлов, удивительно разнообразны по типам. Естественно, что многие аспекты, такие, как необычайно высокая скорость и специфичность ферментативного катализа, пе получили полного объяснения па основании исследования модельных систем. Однако недостающее звено, возможно, как раз и удастся найти там, где структура биологических молекул отклоняется от модельных систем. Возможно, что при этом будут обнаружены наиболее химически интересные явления [258, 259]. [c.397]

    Лабильная связь всегда перпендикулярна плоскости пиридинового кольца, и совокупность ионных, полярных и гидрофобных взаимодействий в ферменте определяет, какой из конформеров будет преобладать. Это легко показать, например, с помощью пью-меновской проекции процесса ферментативного декарбоксилирова-ния. В конформации, необходимой для декарбоксилирования, карбоксильная группа в значительной степени выходит из плоскости конъюгированной системы. Следовательно, специфичность реакции определяется главным образом этой стадией. Так, ферментативное декарбоксилирование аминокислот идет с сохранением конфигурации и обеспечивает, таким образом, синтез оптически чистых а-дейтерированных аминов, если реакцию проводят в тяжелой воде [304]. [c.439]

    В заключение отметим, что таутомеризация происходит внутри-молекулярно и что 1,3-смещение иротона с фронта происходит через азааллильный анион. Однако модель немного отличается от биологической системы тем, что в ней могут протекать конкурентные стереохимические и изотопные реакции. Таким образом, сте-реоспецифичность ферментативных реакций, протекающих с участием коферментов, достигается благодаря апофермектам, в то время как неферментативные модельные реакции не столь стерео-специфичны [310]. [c.448]

    Большинство приведенных примеров показывает, что в основе механизма действия самоуничтожающихся ингибиторов ферментов лежит отщепление протона. По этой причине пиридоксальзависи-мые ферменты являются наиболее вероятными объектами такого ингибирования. Б будущем можно ожидать появления еще большего числа ингибиторов пиридоксальзависимых ферментов, механизм действия которых основан на инактивации функциональной группы, обусловленной карбанионной природой промежуточных соединений [315]. Весьма вероятно, что именно создание более селективных ингибиторов активного центра продвинет вперед разработку самоуничтожающихся ферментативных ингибиторов, или инактиваторов. По сравнению с рассмотренными ранее специфичными к активному центру необратимыми ингибиторами преимущество самоуничтожающихся ингибиторов состоит в том, что, будучи относительно нереакционноспособными, они становятся активными после взаимодействия с остатками в активном центре фермента. Активная форма зависит от каталитических особенностей конкретного активного центра. Таким образом, ингибирование катализируется самим ферментом. Однако оба типа ингибирования позволяют вводить метку и идентифицировать группы активного центра и функциональные группы ферментов. [c.458]

    Представление об исключительно точном геометрическом соответствии молекулы субстрата активному центру фермента как об источнике высокой специфичности при ферментативном катализе послужило основой для исследования каталитических свойств молекул циклоамилоз, обладающих строгой и хорошо известной геометрией [891. Химически циклоамилозы представляют собой циклические полимеры, содержащие не менее шести Л(+)-глюкопиранозных структурных единиц, соединенных а-(1,4)-глюкозидными связями. Участок цепи циклоамилозы имеет следующий вид  [c.110]

    Однако наклон прямой б, соответствующей мицеллярной реакции, несколько меньше, чем в случае ферментативного процесса (пунктир). Это связано с тем, что алкоксильный анион в мицелле расположен в гидратированном поверхностном слое (а это снижает эффективность гидрофобного взаимодействия). Действительно, если нуклеофил несколько углублен в мицеллу, что происходит в случае бензимидазольного аниона [ПО], то специфичность мицеллярного катализа (точки на пунктире) вполне соответствует ферментативному (пунктир). Различия в константах скоростей реакций с участием наименее (ацетат) и наиболее гидрофобногЬ (гептаноат) субстратов превышают два порядка (рис. 29). [c.121]

    Изложенная концепция, которая качественным образом вскрывает причины специфичности фермента по отношению к структуре субстрата, представляет собой синтез взглядов ряда научных школ, рабо-таюш,их в области физико-органической химии и ферментативного катализа (Бендер, Дженкс, Брюс, Блоу, Ноулис, Бернхард, Гесс и др.). Ее количественное кинетико-термодинамическое обоснование (в приложении к химотрипсину, как одному из наиболее изученных ферментов) было получено прежде всего в исследованиях, проводимых в Московском университете [15]. В последующих параграфах будут детально рассмотрены наиболее важные, по-нашему мнению, аспекты этой проблемы. При этом будет сконцентрировано внимание именно на взаимосвязи между структурой и реакционной способностью субстратов и оставлены, по-существу, вне поля зрения ингибиторные подходы , изложенные весьма подробно в [16]. [c.135]

    Автор выражает глубокую признательность чл.-кор. АН СССР И. В. Березину, который привлек его внимание к проблеме специфичности ферментативного катали.чя н оказывал иостояпную иомон1ь и поддержку. [c.5]

    Концепции Тома и Хироми о миогосайтной структуре активных центров карбогидраз (см. следующую главу), разработанные в последнее десятилетие, и данные по картированию активных центров во многом прояснили взаимосвязь между структурой активного центра и специфичностью его действия. Стало возможным предсказывать ход кинетических кривых гидролитического расщепления олигосахаридов и состава продуктов их ферментативной л,сструкции на основе числа сайтов активного центра и таких их характеристик, как показатель сродства сайтов к моносаха-ридным звеньям полимерного субстрата. Несмотря на определенную условность допущений, принятых в качестве базовых положений это теории (об этом будет подробно сказано ниже), основ- [c.23]

    При получении соотношений (17) и (18) делается еще одно допущение (также неочевидное), что о здесь принимается в качестве характеристической константы, величина которой не зависит от степени полимеризации субстрата или от конкретной позиции субстрата (и расщепляемой связи) в активном центре фермента. Иначе говоря, величина ко по гипотезе Хироми задается только химическим механизмом ферментативной реакции, ио не вторичной специфичностью фермепт-субстратного взаимодействия. [c.42]

    Поскольку в настоящее время нет возможности определять данный инкремент свободной энергии активации ферментативной реакции непосредственно из эксиеримеитальиых данных, Тома выдвинул еще одно допущение (к сожалению, опять довольно сильное и немотивированное), что данный инкремент является постоянным для каждого сайта [2, 5] или что гидролитический коэффициент, обусловленный специфичностью ферментативного катализа, неуклонно (монотонно в терминах свободной энергии и экспоненциально в терминах абсолютных констант скоростей) возрастает по мере заиолнения сайтов активного центра. Исходя из данного положения Тома [2] нашел, что при AGa = = 0,45 ккал/моль для сайтов 6 и 7 а-амилазы величины Ла = = —3,0 ккал/моль и 7 = 2,64 ккал/моль достаточно хорошо согласуются с экспериментальными данными по распределению продуктов ферментативного гидролиза мальтодекстринов. [c.69]

    Вместе с тем вся методология обработки экспериментальных данных базируется на весьма сильном допущении, что время, требуемое на единичный проскок субстрата (проокок на один мономерный остаток) вдоль активного центра в ходе множественной атаки, является характеристической величиной, постоянной для действия данного фермента, и независимой от степени полимеризации субстрата или от степени заполнения других сайтов активного центра мономерными остатками. Фактически, это предположение эквивалентно постулату Хироми о постоянстве микроскопического гидролитического коэффициента ферментативного расщепления связей субстрата независимо от степени его полимеризации и степени заиолнения активного центра, применимость которого на практике сомнительна (как в значительной степени отвергающего специфичность ферментативного катализа на молекулярном уровне). [c.88]

    Ясно, что эти данные могут быть интерпретированы более простым образом, а именно что способ действия фосфорилазы (априорно принятый в цитируемой работе [16] как канонический для неупорядоченного действия фермента) несколько отличается от способа действия р-амилазы, что приводит к различному распределению продуктов деструкции полимерного субстрата по молекулярным массам (степени полимеризации). Как неоднократно указывалос . выше, это наиболее характерный признак действия деполимераз, и в рамках кинетики и субстратной специфичности действия ферментов он обусловлен различной зависимостью кинетических параметров ферментативной реакции от степени полимеризации (длины цепи) олигосахаридов. С точки зрения термодинамики действия деполимераз этот характерный признак объясняется различным числом сайтов в активном центре фермента, различным их сродством к мономерным остаткам субстрата и положением каталитического участка в активном центре. Как видно, и в этом случае введение гипотезы о множественной атаке было излишним и преждевременным, так как экспериментальные данные, полученные авторами работы [16], не были подвергнуты тщательному анализу. [c.91]

    Одному из авторов гипотезы о непродуктивном связывании субстратов лизоцима (т. е. о неправильном расположении субстратов относительно сайтов активного центра), Раили, принадлежат следующие слова Концепция непродуктивного связывания субстратов с лизоцимом была развита, чтобы объяснить, почему хитоолигосахариды (выше димера) имеют одинаковые константы ассоциации с активным центром фермента, но характеризуются различными скоростями гидролиза [147]. Следует напомнить, однако, фундаментальное положение специфичности ферментативного катализа, которое гласит, что один из путей ускорения ферментативного катализа заключается в использовании части свободной энергии связывания субстрата для понижения свободной энергии активации ферментативной реакции (см. [79—84]). Та- [c.195]

    КИМ образом, эффект, изложенный Рапли, можно объяснить без привлечения гипотезы непродуктивного связывания, а именно с точки зрения возрастания специфичности ферментативного катализа за счет использования все возрастающей части свободной энергии нековалентного фермент-субстратного взаимодействия при увеличении длины цепи олигосахаридиого субстрата. [c.196]

    Другими словами, существуют две концепции, с противоположных (на первый взгляд) позиций объясняющие субстратную специфичность лизоцима (в отношении длины цепи олигосахаридных субстратов). Согласно первой концепции, при переходе от длинных олигосахаридов к коротким непропорционально возрастает константа ассоциации последних с ферментом за счет резкого увеличения степени непродуктивного (геометрически неправильного) связывания. В итоге константы ассоциации длинных и коротких олигосахаридов с ферментом оказываются одинаковыми Кт = = 10" М от тримера до гексамера, см. табл. 38), по эффективность каталитической деградации коротких олигосахаридов мала. Согласно второй концепции, ири переходе от коротких олнгоса-харидов к длинным последние пс реализуют потенциальные воз-можр[ости фермент-субстратных взаимодействий п комплексе Михаэлиса (что и приводит к их относнтельпо малым величинам констант ассоциации с активным центром), но полностью реализуют взаимодействия в переходном состоянии ферментативной реакции. Чем выше степень полимеризации субстрата (в пределах активного центра фермента), тем бoльнJe он резервирует возможностей для уменьшения свободной энергии переходного состояния реакции за счет дополнительных взаимодействий (по сравнению с взаимодействиями в комплексе Михаэлиса) и тем выше скорость ферментативного гидролиза. [c.196]

    Детальные исследования, ироведеиные в последние годы, позволили отвести гипотезу об искажении структуры субстрата в активном центре лизоцима при образовании комплекса Михаэлиса. Тем ие меиее вопрос о субстратной специфичности лизоцима, а именно о причинах резкого ускорения ферментативного катализа при увеличении стеиени полимеризации олигосахаридов (от димера до гексамера), остается пока нерешенным, хотя на этот счет есть целый ряд гипотез. [c.201]

    К Л ё с о П А. А. Кинетико-термодинамические основы субстратной специфичности ферментативного катализа. Дис. иа соиск. учен. степ. докт. хим. наук. М., 1977. [c.205]


Библиография для Ферментативный специфичность: [c.136]    [c.105]    [c.207]   
Смотреть страницы где упоминается термин Ферментативный специфичность: [c.322]    [c.212]    [c.289]    [c.16]    [c.105]    [c.107]    [c.197]   
Кинетика и катализ (1963) -- [ c.251 , c.253 , c.261 ]




ПОИСК





Смотрите так же термины и статьи:

Максимальная скорость ферментативная специфичность

Специфичность ферментативного действия

Ферменты Общая характеристика ферментативных реакций Раб о т а 19. Специфичность ферментативного действия

Ферменты, протеолитические определения ферментативные, специфичность



© 2024 chem21.info Реклама на сайте