Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение конформации белка в растворе

    Интенсивное изучение пространственного строения синтетических полипептидов продолжалось в течение 1950-х и первой половины 1960-х годов. Были привлечены практически все известные физические и физикохимические методы, позволяющие получать информацию о строении молекул в твердом состоянии и в растворах. Наибольшее количество данных было получено с помощью рентгеноструктурного анализа, методов рассеяния рентгеновских лучей под малыми углами, дисперсии оптического вращения, кругового дихроизма и дейтерообмена, с помощью обычных и поляризованных инфракрасных спектров. Из полученного при исследовании синтетических полипептидов огромного экспериментального материала, однако, не удалось сделать обобщающих заключений о причинах стабильности регулярных структур и сказать что-либо определенное на этой основе о принципах структурной организации белков. И тем не менее, результаты исследования повсеместно были восприняты как подтверждающие ставшее общепринятым представление о том, что пространственное строение белковой глобулы представляет собой ансамбль унифицированных регулярных блоков вторичных структур, прямую информацию о геометрии которых дают высокомолекулярные синтетические пептиды. а-Спиральная концепция Полинга не только не была поставлена под сомнение, но еще более утвердилась. В 1967 г. Г. Фасман писал "Общепризнано, что лишь несколько конформаций, благодаря своей внутренней термодинамической стабильности, будут встречаться наиболее часто и, по-видимому, именно они составляют общую основу белковой структуры" [5. С. 255]. Между тем, в то время уже были известны факты, настораживающие от безусловного принятия а-спиральной концепции Полинга. Но они выпадали из множества других фактов, согласующихся с традиционным представлением, казавшимся логичным и правдоподобным, к тому же не имевшим альтернативы. Поэтому на данные, противоречащие концепции Полинга, долгое время не обращали внимания. [c.72]


    В соответствии с терминологией, предложенной Линдер-стрём-Лангом [ ], можно сказать, что молекулы обычных полимеров в растворе не обладают вторичной структурой, тогда как молекулы биологически активных полимеров и их синтетических аналогов могут ее иметь. При этом первичной структурой макромолекулы называется число и расположение химических связей в молекуле, а вторичной — регулярная пространственная спиральная структура с определенной периодичностью, стабилизуемая водородными связями. Исследованию вторичных структур биологически активных макромолекул посвящено громадное количество работ, в которых были определены параметры спиральных конформаций для большого числа синтетических полипептидов и полинуклеотидов, а также для природных нуклеиновых кислот и белков. В последнем случае, наряду с вторичной структурой, большую роль играет также третичная структура молекул, т. е. взаимное расположение спиральных и неспиральных участков, обусловленное взаимодействием боковых групп цепи, в частности, связями 5—8. Наиболее известные примеры вторичных сгруктур представляют собой а-спираль Полинга — Кори [2> ] для полипептидов и двойная спираль Крика — Уотсона [ ] для дезоксирибонуклеиновой кислоты (ДНК). Эти структуры [c.291]

    Сольвофобные взаимодействия играют важную роль в ассоциации полиметиновых красителей [81] ив стабилизации определенных конформаций полипептидов и белков в водных растворах [222, 223]. Они участвуют и в образовании фермент-субстратных комплексов [77, 78, 83, 84]. [c.54]

    ОПРЕДЕЛЕНИЕ КОНФОРМАЦИИ БЕЛКА В РАСТВОРЕ [c.286]

    Имеющиеся экспериментальные данные свидетельствуют о том, что трехмерные структуры белков характеризуются плотнейшей упаковкой атомов. Коэффициенты упаковки белковых молекул в нативном состоянии имеют значения от 68 до 82%. Для сравнения напомним, что у правильных сферических тел этот коэффициент равен 74%, а у молекул воды и циклогексана - 58 и 44% соответственно. По плотности упаковки атомов белковые молекулы близки кристаллам малых органических молекул (70-78%). Нативные структуры белков имеют также незначительные коэффициенты сжимаемости, близкие, например, коэффициентам сжимаемости олова и каменной соли. Высокая компактность глобулярных белков подтверждается большой плотностью, малой вязкостью и малыми молекулярными объемами нативных белков в растворе. Так, наблюдаемые у них величины плотности (1,3-1,5 г/см ) выше, чем у сухих белков и близки величинам плотности кристаллов низкомолекулярных органических соединений. Это свойство пространственных структур белковых молекул безупречно с физической точки зрения и очень образно передает определение их как "апериодические кристаллы" - термин, использованный Э. Шре-дингером для характеристики состояния хромосом [52]. Таким образом, есть все основания заключить, что нативная конформация белка представляет собой плотно упакованную структуру с максимальным числом внутримолекулярных контактов между валентно-несвязанными атомами. [c.102]


    В настоящее время показано [97], что устойчивость компактной пространственной структуры глобулярных белков в водных растворах обусловлена теми же силами, которые приводят к мицеллообразованию в растворах ПАВ. В результате гидрофобных взаимодействий в глобулах белков и мицеллах ПАВ возникают неполярные области, ответственные за солюбилизацию. Размер, состав и свойства этих областей целиком определяются конформацией белка, а так как конформация глобулярных белков в растворе практически не зависит от концентрации белка, становится понятным, что независимо от концентрации белка в растворе с глобулой белка должно взаимодействовать определенное количество углеводорода, а концентрация углеводородов в растворе увеличивается пропорционально числу солюбилизирующих глобул. [c.22]

    Первым по значимости методом определения структуры белков в нативном кристаллическом состоянии, несомненно, является рентгеноструктурный анализ. Действительно, сейчас даже трудно себе представить какой-либо другой метод, с помощью которого было бы можно определять тысячи параметров, необходимых для решения этой труднейшей, но интереснейшей задачи. Для изучения белков в растворах необходимы, однако, другие методы. В прошлом для определения конформаций белков и конформационных изменений, мест связывания субстрата с кофактором, изучения ферментативной специфичности и решения многих других вопросов, касающихся структуры и функции белков, применялись самые разнообразные химические и физические способы. С их помощью получен большой объем сведений. [c.347]

    Со времени опубликования в 1953 г. классического труда Флори по химии полимеров произошло два важнейших события, которые оказали глубокое влияние на всю область химии полимеров. Во-первых, были разработаны методы синтеза стереорегулярных виниловых полимеров. Это расширило область изучения свойств макромолекул в растворе, причем большее внимание стало уделяться методам, позволяющим характеризовать стереорегулярность образца. Оно также послужило стимулом для более тщательного теоретического анализа конформаций цепных молекул. Вторым важным событием явилось открытие существования систем, цепные макромолекулы которых принимают в растворе строго определенные спиралевидные конформации. В результате исследований переходов спираль — клубок в изолированных цепных молекулах было показано, что эти переходы являются одномерным аналогом процесса плавления. Теоретическое значение этого факта выходит за пределы макромолекулярной химии. Это открытие сыграло и другую важную роль. После того как было установлено, что строго определенные конформации в растворе принимают не только биологические макромолекулы, считавшееся ранее само собой разумеющимся разделение природных и синтетических макромолекул стало абсурдным и превратилось в серьезное препятствие на пути развития химии полимеров. Поэтому цель данной книги заключается в том, чтобы привлечь внимание химика, имеющего дело в основном с синтетическими макромолекулами, к необычным данным, полученным при исследованиях белков и нуклеиновых кислот. В ней сделана попытка поднять такие вопросы, как возможность получения синтетических полимеров, обладающих особым сродством к малым молекулам или способностью действовать в качестве сугубо специфических катализаторов. [c.7]

    Значение pH раствора полиамфолита, при котором средний суммарный заряд на цепи равен нулю, называется изоэлектрической точкой (ИЭТ). Величина ИЭТ не зависит от концентрации полиамфолита и является важной константой полиамфолита. На различии в ИЭТ основано фракционирование смесей белков, например, методом электрофореза. При определении ИЭТ учитывается суммарный заряд макромолекул, обусловленный не только диссоциацией кислотных и основных групп полиамфолита, но и специфическим связыванием посторонних ионов из раствора. ИЭТ определяется с помощью электрокинетических методов (в частности, электрофореза) либо косвенным путем по изменению свойств, связанных с зарядом макромолекул. Значения степени набухания, растворимости полиамфолитов, осмотического давления и вязкости их растворов в ИЭТ проходят через минимум. Вязкость в ИЭТ минимальна (рис. IV. 7), поскольку вследствие взаимного притяжения присутствующих в равном количестве противоположно заряженных групп полимерная цепь принимает относительно свернутую конформацию. При удалении от ИЭТ цепь полиамфолита приобретает суммарный положительный (в кислой области pH) или отрицательный (в щелочной области pH) заряд [c.127]

    Детальное представление о нативных конформациях белков основано почти исключительно на результатах рентгеноструктурного анализа. Спектральные методы конформационного исследования белков в растворе пока не имеют в определении геометрии макромолекул самостоятельного значения. Однако они могут быть полезными в изучении ряда свойств белков и обнаружении связанных с ними новых явлений. Так, некоторые спектральные методы чувствительны к конформационным состояния.м, внешнему окружению и изменениям положений атомных групп в структуре белковой макромолекулы и даже к небольшим перемещениям отдельных атомов. Интерпретация подобных фактов тем не менее осуществляется в основном с помощью рентгеноструктурных моделей. [c.340]


    Полимерные цени, к которым относятся указанные выше замечания, могут принимать множество форм беспорядочных клубков , ни одна из которых не обладает какими-нибудь преимуществами перед другими. Однако ограниченный класс линейных цепных молекул способен принимать в растворе строго определенные конформации, соответствующие свернутым в спираль стержневидным структурам. Такое поведение типично для некоторых белков, нуклеиновых кислот и их синтетических аналогов. Переход формы цепи из беспорядочного клубка в спиральную конформацию можно рассматривать как одномерный аналог кристаллизации, и, таким образом, значение принципов, лежащих в основе такого явления, выходит за рамки профессиональных интересов химика, имеющего дело с полимерами. Кроме того, очевидно, что только большие молекулы с такими точно определенными пространственными соотношениями, какие, например, следуют из упорядоченных конформаций белков и нуклеиновых кислот, могут проявлять высокую специфичность молекулярных взаимодействий, являющихся неотъемлемой частью жизненных процессов. Это соображение, несомненно, послужило причиной огромных усилий, затраченных в последние годы на детальное выяснение условий, способствующих стабилизации упорядоченных образований в растворах полипептидов и полинуклеотидов. Возникающая в связи с этим проблема опреде-.ления сил, ответственных за складывание полипептидных цепей, состоящих из спиральных и неспиральных участков, в своеобразную третичную структуру нативных белков (см. раздел В-5) остается предметом будущих исследований. [c.86]

    В растворе белки имеют строго определенную конформацию, или трехмерную структуру. Биологическая активность почти всех без исключения белков, будь то белки-катализаторы, структурные белки, белки, ответственные за транспортные процессы, белки, участвующие в формировании опор-но-двигательного аппарата, или белки-регуляторы, зависит от сохранения их природной, или активной, конформации. Белки в соответствии с их конформацией можно разделить на две категории. Глобулярные белки имеют компактную, примерно сферическую форму, образующуюся в результате нерегулярной укладки полипептидных цепей (рис. 129). В фибриллярных белках полипептидные цепи располагаются параллельно друг другу, образуя длинные нити или слои (рис. 1.30). Больщинство ферментов [c.59]

    Учитывая огромный объем информации, подлежащий хранению (например, тип организма, физические свойства, химические превращения и т. д.), следует ожидать, что это будет биополимер. Возможно ли, чтобы в качестве такой молекулы выступал белок Вероятнее всего, нет, поскольку белки и так играют важную роль структурных и функциональных (ферментативный катализ) компонентов клетки. Столь важная функция как хранение информации должна выполняться уникальной макромолекулярной структурой, которая, скорее всего, не участвует в обычных клеточных процессах. Можно ожидать, что этот специфический биополимер имеет весьма однородную структуру, поскольку он должен выполнять исключительно важную роль. Не следует думать, что для него характерно такое же структурное разнообразие, как для белков, поскольку последние способны участвовать в очень многих химических реакциях. В то же время он должен состоять из разнородных компонентов, чтобы нести различную информацию. Следует ожидать, что этот биополимер обладает жесткой, вполне определенной структурой, так как он должен взаимодействовать с клеточным аппаратом при передаче хранимой информации. Свободно висящая молекула, состоящая из ациклических полимерных цепей и принимающая одну из множества возможных конформаций, вряд ли будет соответствующим образом взаимодействовать, даже кооперативно, с упорядоченными структурами клеточных компонентов. Специфическая информация должна передаваться соверщенно точно. Напомним, что синтез белков, например, происходит на матрице упорядоченно и последовательно, а не статистически в растворе (разд. 2.5). [c.105]

    ИЛИ совсем не обмениваться. В тех случаях, когда атомы водорода участвуют в водородных связях или находятся в гидрофобных областях вне контакта с растворителем, их нормальная скорость Обмена снижается. Для определения скорости обмена дейтерированный белок растворяют в Н2О и через определенные интервалы времени измеряют плотность растворителя, которая зависит от относительного содержания дейтерия. Можно также использовать в подобных экспериментах радиоактивный тритий или определять скорость обмена по уменьшению интенсивности амидной полосы поглощения в инфракрасной области при 1550 м , которое наблюдается при растворении белка в D2O. Последний способ является наиболее удобным. Определение скорости изотопного обмена можно производить и по другим полосам поглощения в инфракрасной области, а также с помощью магнитного ядерного резонанса. В случае малых полипептидов для этой цели можно использовать спектры комбинационного рассеяния. Следует учесть, что эти методы приводят к правильному результату только в тех случаях, когда изотопное замещение не вызывает изменения конформации белка. Например, для нормальной рибонуклеазы температура перехода в воде при pH 4,3 равна 62°, а для дейтерированной, растворенной в D2O, она равна 66°. Таким образом, дейтерирование способствует сохранению спиральной конформации. Поэтому при анализе экспериментов по изотопному обмену, проводимых при 65°, необходимо учитывать изменение относительного содержания фракций белка, имеющих различную конформацию. Во избежание подобных осложнений следует проводить опыты в условиях, исключающих возможность конформационных переходов. [c.295]

    Следует тем не менее подчеркнуть, что структура кристаллической решетки играет определенную роль, нанример, в эффекте связывания лизоцимом ионов металлов. Так, после вымачивания тетрагонального лизоцима в растворе Gd (III) в течение 20 часов степень заполнения активного центра ионами металлов составляла 24—38%, а в случае триклинного лизоцима эта величина составила 1,6—3,6% после вымачивания в течение 4 недель [33]. Это говорит о различной межмолекулярной упаковке белков в двух данных полиморфных формах кристаллического лизоцима. Тем не менее результаты исследования методами ЯМР [46] и рентгеноструктурными методами [2] в целом показали, что кон- формация лизоцима и ориентация функциональных групп его активного центра весьма близки (если не идентичны) в растворе и кристалле [46]. В цитируемой работе [46], однако, ие обсуждается, что рентгеноструктурный анализ был выполнен при низких или комнатных температурах, а изучение ЯМР — ири 54° С [46]. Иначе говоря, эти исследования выполняли по разные стороны от температуры конформационного перехода фермента (25—30° С 47—54]) и, следовательно, с различными конформациями лизоцима, которые заметно различаются по эффективности связывания фрагментов субстрата и, возможно, по конформации активного центра. Вопрос этот остается пока открытым в литературе, но требует более критического анализа при сопоставлении экспериментальных данных, полученных при различных условиях (в особенности, данных по изучению структуры фермента в растворе и кристаллическом состоянии). [c.158]

    Сравнение результатов по кинетике образования пространственных структур различных белков, первоначально имеющих различную конформацию макромолекул в водном растворе, с результатами определения предельной прочности трехмерных структур [c.131]

    Была проведена интересная работа по использованию оптического вращения для определения структуры молекул в случае полипептидных цепей белков и синтетических полипептидов, приготовленных из оптически активных аминокислот. При рассмотрении синтетических полипептидов в разделах 4д и 5г было показано, что эти вещества можно приготовить таким путем, чтобы они в твердом состоянии находились в высококристаллических формах, в которых отдельные полипептидные цепи имеют спиральную конформацию, показанную на рис. 16. В разделе 5в были представлены спектроскопические доказательства того, что спиральная конформация может сохраняться и в том случае, если молекулы диспергированы в растворе. При последующем изложении в этой книге мы часто ссылаемся на синтетические полипептиды. Далее будет убедительно доказано, что а-спиральная конформация в самом деле является стабильной конформацией этих молекул во многих растворителях. Однако это справедливо не для всех растворителей. В растворителях, которые имеют сильную тенденцию к образованию водородных связей, карбонильные и иминогруппы полипептидной цепи будут стремиться образовать водородные связи в первую очередь с растворителем, а не друг с другом и при этом а-спираль не будет сохраняться. Вместо этого полипептидные цепи свертываются случайным образом и не имеют предпочтительной формы. [c.141]

    Взаимодействие белка с молекулами воды приводит к ряду своеобразных явлений. Гидратированные молекулы белка при определенных условиях способны образовывать студнеобразные массы — гели. Примером гелеобразной системы может служить система вода—желатина. При охлаждении 5-процентный раствор желатины застывает, образуется плотная эластичная масса, имеющая сеточную структуру, в полостях которой задерживается большое количество воды. Часть ее, несомненно, связана химически с белком. По-видимому, молекулы воды присоединяются к его ионным или полярным группам, возможно также присоединение к пептидным группам СО — ЫН. В настоящее время считают, что молекулы воды, содержащиеся в клетке, связывая между собой отдельные цепеобразные молекулы белка, выполняют роль стабилизатора формы белковой молекулы, окружая ее со всех сторон и препятствуя случайным изменениям конформации (рис. 16). Как и у аминокислот, растворимость белков минимальна в изо-электрической точке. [c.58]

    Браун и Нетши [14] использовали изложенные выше представления для изучения белков мембран и липо-протеидов. Определения они проводили в 8 М растворе мочевины и пришли к выводу, что в обычных растворах эти молекулы вытянуты и сильно сольватированы. Влияние липида ца агрегацию белка или на его конформацию в 8 М растворе мочевины не было обнаружено. [c.142]

    В последние годы для изучения взаимодействия белков с лигандами используют метод ЯМР [101—103], оспованпый на изменении ЯМР-спектров белка в присутствии, например, ПАВ, а также метод, основанный на изменении спектров флуоресценции (улгеньшение интенсивности и смещение максимума испускания) [104]. Большое преимущество этих методов связано с тед1, что они позволяют не только произвести количественную оценку величины связывания, но также дают возможность проследить изменение конформации белка, вызываемое лигандом, и в совокупности с другими методами определить характер связывающего места. В работе [105] предложен метод определения растворимости углеводородов в растворах белков методом газо-жидкостной хроматографии. [c.20]

    Рассмотрим теперь, какие межмолекулярные связи участвуют в образовании необратимого прочного межфазного адсорбционного слоя. Можно ожидать, что в образовании межмолекулярных связей будут участвовать те же типы связей, которые обеспечивают определенную конформацию молекул белка в растворе. Все эти типы связей электрической природы, но различно11 силы кулоновское взаимодействие, ван-дер-ваальсово взаимодействие и водородные связи. При денатурации молекул яичного альбумина разрываются внутримолекулярные водородные связи и ван-дер-ваальсовы ( гидрофобные ) связи, при этом образуются в соответствующих условиях межмолекулярные связи. [c.206]

    Детальные описания указанных работ имеются в обзоре Рамачандрана и Сасисекхарана [16], посвященном рассмотрению конформаций пептидов и белков. Один из обзоров Шерага [17] охватывает расчеты конформаций олиго- и полипептидов, другой его обзор [18] посвящен анализу термодинамических свойств пептидов и белков в растворах и исследованию роли ближайших взаимодействий в определении нативной конформации белка. В обзоре автора [19, с. 93] рассмотрены более поздние достижения в расчетах конформаций пептидов и, в частности, работы,проведенные у нас в стране. [c.360]

    Как известно, молекулы белка построены из большого числа аминокислот. Поэтому при изучении структуры белка методом ИК-спектроскопии нельзя просто воспользоваться теми данными, которые были получены при исследовании полипептидов. В работе [137] изучали зависимость конформации от состава аминокислот для тех синтетических полипептидов, которые моделируют составные части белков. Было показано [1895, 1896], что при денатурировании дезоксирибонуклеиновых кислот в их спектрах исчезают полосы при 1645 и 1680 см и вместо них появляются полосы при 1660 и 1690 см- . Первые две полосы соответствуют регулярным водородным связям между звеньями пурина и пиримидина, которые придают прочность двойной спирали. Исследования проводили с использованием растворов в тяжелой воде. В работе [136] обсуждается необходимость спектроскопического изучения биополимеров, находящихся в Н2О и ВгО, поскольку эти жидкости являются их естественными растворителями. Там же рассмотрены соответствующие методики исследования. Изучены конформацион-ные изменения, происходящие при денатурации белков плазмы крови [1314, 1315J. Исследованы колебания пролинового кольца в пoли-L-пpoлинe [257, 259], который является составной частью многих белков. Был сделан вывод, что полосу при 1440 см можно использовать только для определения содержания остатков иминокислот в молекуле полипептида. [c.344]

    Метод пертурбации растворителем позволяет определить в результате регистрации спектров поглощения белка в полярном и неполярном растворителях, является ли аминокислота внутренней или внешней. Поскольку обычно представляет интерес определение структуры белка в водных солевых растворах (моделирующих нахождение белка в живой клетке), необходимо, чтобы неполярный растворитель сам по себе не вызывал конформаци-онных изменений, и это нужно всегда проверять другими методами, В действительности белки очень редко изучают в неполярных растворителях, так как большинство белков либо не растворяется, либо денатурирует в этих растворителях. В обычной практике используют растворитель, который на 80% состоит из воды, а на 207о—из вещества пониженной полярности. Некоторые стандартные смеси приведены в табл. 14-3. Эти растворители с пониженной полярностью называются растворителями-пертур-бантами. [c.400]

    В настоящее время ЯМР успешно используется для изучения белков в пяти случаях 1) определение доли аминокислот в а-спиральной конформации с целью подтверждения существова-1(ия в растворе структуры, установленной по данным дифракции рентгеновских лучей 2) контроль за переходами спираль — клубок 3) определение конформации выбранных участков белка (например, вблизи определенной аминокислоты) 4) наблюдение связывания малых молекул и пинов металлов с выбранными участками белка (на основании спектра либо лиганда, либо белка) и 5) исследование парамагнитных активных центров в белках — переносчиках электронов. [c.502]

    В определенных условиях при медленном охлаждении раствора денатурированного нагреванием белка происходит ренативация — восстановление исходной (нативной) конформации (см. рис. 1.20, 4). Это подтверждает, что характер укладки пептидной цепи определяется первичной структурой белка. Процесс образования нативной конформации белка самопроизвольный, т. е. эта конформация отвечает минимуму свободной энергии молекулы. Можно сказать, что пространственная структура белка закодирована в аминокислотной последовательности пептидных цепей. Это означает, что все идентичные по чередованию аминокислот полипептиды (например, пептидные цепи миоглобина) будут принимать идентичную же конформацию. Однако из этого правила есть исключения. Капсид (оболочка) вируса кустистости томатов содержит белок, построенный из субъединиц А, В и С первичная структура этих субъединиц идентична, а конформация различна. Известны идентичные олигопептидные последовательности (около 5 аминокислотных остатков), которые в одних белках образуют а-спирали, в других — р-струк-туры. Таким образом, нативная конформация каждого участка пептидной цепи зависит не только от его первичной структуры, но и от ближайшего окружения. [c.36]

    Белки характеризуются поэтому структурной и оптической изомерией и, кроме того, пространсгвенной конфигурацией молекулы, возникающей в результате определенного складывания пептидных цепей. Такая пространственная конфигурация молекул получила название конформации. Вероятно, конформацией молекулы объясняется еще одна особенность белков —их повышенная лабильность (неустойчивость), легкость превращения глобулярных белков в фибриллярные, легкость денатурации, выражающаяся в потере белком способности растворяться. [c.434]

    Хотя и существуют четкие правила определения различных конформаций полипептидов, они оказываются малопригодными для определения соотношений смешанных конформаций, которые принимают глобулярные белки, например в растворе. Проникнуть в область дальнего ультрафиолета, а именно в область поглощения амидного хромофора, стало возможным только в шестидесятых годах, когда были созданы более усовершенствованные спектропо-ляриметры, и для основных конформаций оказалось возможным увидеть соответствующие налагающиеся эффекты Коттона. [c.436]

    При исследовании расплавов или растворов полимеров обычно имеют дело с макромолекулами разнообразных форм атомы, составляющие основную цепь полимера, могут принимать любую конформацию из большого числа конформаций, которые допускаются ковалентными связями и валентными углами их первичной структуры. Поэтому вторичная структура таких полимеров характеризуется динамической последовательностью быстрых изменений внутренних степеней свободы полимера при действии на полимер сдвиговых напряжений и теплового движения. Такая вторичная структура называется конформацией статистического клубка. Для молекул почти всех синтетических полимеров характерна конформация статистического клубка в растворе и расплаве. Известны, однако, определенные биологические макромолекулы, которые следует отнести к противоположному краю конформационного спектра. В белках и ферментах сочетание ковалентных и нековалентных сил приводит к вторичной и третичной структурам (трехмерная пространственная упорядоченность вторичной структуры), которые являются энергетически выгодными даже в растворе. Эти сложные, строго заданные трехмерные конформации обусловливают высоко-специфичесние биологические функции белков и ферментов. [c.182]

    По-видимому, единственный обоснованный метод исследования МВ белка с помощью гелевой хроматографии заключается в определении элюционных характеристик белков, после превращения их в статистические клубки путем разрыва связей 3—3 и денатурации в концентрированных растворах мочевины (8Л/) или гуанидинхлорида (6М). Этот метод основан на результатах Бенуа [42], показавшего, что существует универсальная линейная калибровочная зависимость, связывающая удерживаемый объем макромолекул с логарифмом произведения МВ на характеристическую вязкость [т]]. Однако подобная зависимость не прослеживается у глобулярных белков, возможно вследствие трудности точного определения у них [т]]. С другой стороны, при переходе к денатурированным белкам, когда пептидные цени находятся в конформации статистического клубка, этот метод становится особенно удобным, поскольку, как это установлено в работе [43], для подобных пептидов существует универсальная линейная зависимость 1д [т1]и lg (МВ). Действительно, в работах [44, 45] показано, что имеет место линейная зависимость удерживаемых объемов денатурированных таким образом белков от lg (МВ). Нами была исследована подобная зависимость для ТСГХ денатурированных в мочевине и гуанидинхлориде ДНС-белков [40]. При этом для предотвращения реокисления полученных нри восстановлении меркантоэтанолом ЗН-грунн последние блокировались с помощью иодуксусной кислоты. [c.153]

    Подобные нуклеопротеидные комплексы РНК —белок будут рассмотрены в следующей главе. Настоящая глава посвящена конформации полирибонуклеотидов и свободной от белка РНК в растворе. Так же как и белки, природные полирибонук-леотиды анализировать трудно, и поэтому исследователи направили свои усилия на изучение синтетических полимеров известного состава. Часто эти полимеры представляют собой цепочки из одинаковых нуклеотидов. Данные, полученные при исследовании синтетических полирибонуклеотидов, позволяют сделать определенные выводы об особенностях строения свободной РНК. [c.339]

    Если определение молекулярного веса ДНК связано с особыми трудностями (из-за большого размера молекулы и ее двухспиральной структуры), то точное измерение молекулярного веса РНК в принципе не сложнее, чем определение молекулярного веса любого белка или другого полимера. В разбавленных солевых растворах РНК, молекулярный вес которых варьирует от 26 000 до 2 000 000, имеют довольно компактную конформацию. Таким образом, они имеют размеры и структуру, для изучения которых внолне приложимы обычные физико-химические методы исследования макромолекул. Но, несмотря на это н несмотря на столь важное значение РНК, в литературе можно найти лишь несколько наден ных измерений их молекулярного веса. Чтобы понять причину этого, следует уяснить себе те трудности, с которыми приходится сталкиваться при определении физических параметров РНК. Сюда входит проблема получения достаточных количеств действительно чистого материала, влияние следовых количеств нуклеаз и тенденция молекул РНК к агрегации. [c.251]


Смотреть страницы где упоминается термин Определение конформации белка в растворе: [c.517]    [c.125]    [c.210]    [c.134]    [c.121]    [c.353]    [c.123]    [c.448]    [c.84]    [c.574]    [c.353]   
Смотреть главы в:

Введение в биофизическую химию -> Определение конформации белка в растворе




ПОИСК







© 2024 chem21.info Реклама на сайте