Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал измерение компенсационным методом

    Как известно из физической химии, скачок потенциала между двумя фазами не может быть измерен, но можно измерить компенсационным методом электродвижущую силу элемента, составленного из исследуемого электрода (например, металла в электролите) и электрода, потенциал которого условно принят за нуль. Таким электродом служит стандартный водородный электрод, а электродвижущую силу гальванического элемента, составленного из стандартного водородного электрода и из исследуемого электрода, принято называть электродным потенциалом, в частности электродным потенциалом металла. [c.150]


Рис. 35. Схема измерения потенциала электрода компенсационным методом. Рис. 35. Схема <a href="/info/291887">измерения потенциала электрода</a> компенсационным методом.
    Потенциометрия —важный метод исследования и анализа, в основе которого лежат термодинамические соотношения между э. д. с. электрохимических систем или электродными потенциалами, с одной стороны, и физико-химическими параметрами растворов и химических реакций—с другой. Для измерения э. д. с. гальванических элементов в равновесном состоянии наиболее удобен компенсационный метод. Для определения потенциалов отдельных электродов электрохимическая цепь составляется из исследуемого электрода и электрода сравнения с известным значением потенциала (см. 176). Рассмотрим отдельные области применения потенциометрических определений.  [c.494]

    Вместо длин отрезков тип обычно измеряют их сопротивления Ят и Н . Поскольку В гальваническом элементе в качестве электрода сравнения используется стандартный водородный электрод, то искомый электродный потенциал будет равен измеренной компенсационным методом эдс. Например, если измеренная эдс гальванической цепи из стандартных водородного и медного электродов составляет +0,34 В, то, значит, стандартный потенциал меди равен [c.262]

    Прохождение тока при измерении потенциала вызвало бы изменение концентрации определяемого иона в анализируемом растворе. Это изменение наиболее сильно проявилось бы вблизи индикаторного электрода. Возникновение концентрационной (Поляризации привело бы к тому, что измеренное значение потенциала совершенно не соответствовало бьг концентрации определяемого иона в анализируемом растворе. Поэтому измерение потенциала проводят в отсутствие тока. Наиболее ранним является компенсационный метод с использованием схемы Поггендорфа. [c.308]

    Собирают схему для измерения потенциала катода компенсационным методом, состоящую из аккумулятора на 4 V, двух магазинов сопротивлений, реостата, гальванометра, телеграфного ключа, нормального элемента и двухполюсного переключателя. [c.116]

    Оценить глубину расположения инжектированного объемного заряда можно, сравнивая значения потенциала поверхности электрета, измеренные компенсационным методом Уэ, и полученные интегрированием тока ТСД. [c.30]


    При вычислении э. д. с. Е от большего потенциала вычитают меньший, руководствуясь данными таблицы ряда напряжений. Таким образом, во всех случаях >0, На опыте измерение э. д. с. гальванических элементов обычно выполняют компенсационным методом. При использовании потенциометрического мостика с реохордной проволокой вычисление э. д. с. производят по формуле [c.148]

Рис. 36. Схема измерения потенциала компенсационным методом Рис. 36. Схема измерения потенциала компенсационным методом
    При измерениях э. д. с. нельзя пользоваться обычным низкоомным вольтметром, поскольку его включение в цепь нарушает равновесие из-за протекания значительного тока. Поэтому для измерения э. д. с. применяют компенсационный метод, при котором разность потенциа- [c.107]

    Электрическая схема измерения электродного потенциала компенсационным методом приведена на рис. 5.11. Проволока (реохорд) АВ присоединена к источнику тока с известной эдс -El. По проволоке перемещается подвижный контакт, соединенный через гальванометр со стандартным электродом сравнения гальванического элемента. Другой электрод, потенциал которо- [c.261]

    Экспериментальное изучение зависимости между плотностью тока и потенциалом поляризуемого электрода зачастую осложнено тем, что на твердых электродах истинная величина электродной поверхности, а следовательно, и плотности тока, не остается постоянной. Кроме того, при классическом компенсационном методе измерения поляризационных кривых, помимо электродного скачка потенциала, измеряется некоторая величина сопротивления электролита, зависящая от расстояния, на котором расположен конец электролитического ключа (гебера) от электрода  [c.309]

    Снятие кривых заряжения проводилось в ячейке, изображенной на рис. 1. Кривые заряжения изучались в 0,1 растворах серной кислоты, сульфата натрия и едкого натра. Станнатный электрод перед опытом очищали хромовой смесью, многократно промывали бидистиллятом и выдерживали не менее 2 час. в бидистилляте. Поляризующая цепь состояла из батареи 20 б и сопротивления 10 — 10 ом, обеспечивающего стабильность поляризующего тока. Измерения потенциала при заряжении производились компенсационным методом с усилителем. Электродом сравнения служил насыщенный каломельный электрод. [c.210]

    Снятие поляризационных кривых и измерение потенциала катода во время электролиза осуществлялось компенсационным методом при помощи высокоомного потенциометра и гальванометра в качестве нуль-инструмента. Кривые потенциал — время в начальный момент восстановления металлов на висмутовом катоде регистрировали при помощи электронно-лучевого осциллографа. [c.214]

Рис. 49. Схема возможных омических потерь напряжения, включаемых в величину потенциала электрода под током при его измерении по прямому компенсационному методу Рис. 49. <a href="/info/1546906">Схема возможных</a> <a href="/info/603024">омических потерь</a> напряжения, включаемых в <a href="/info/603138">величину потенциала электрода</a> под током при его измерении по прямому компенсационному методу
    Для получения более полной характеристики поведения металла в том или ином электролите необходимо производить измерения потенциала во времени, хотя, как известно, между электродным потенциалом и скоростью коррозии не существует однозначной связи. Обычно в лабораторной практике измерения потенциалов производятся по отношению к каломельному электроду компенсационным методом (рис. 7). [c.19]

    Титрование выполняют по классическому компенсационному методу измерения э. д. с. цепи с пр-именением хингидронного электрода и нас. к. э. сравнения. Испытуемый раствор титруют стандартным раствором щелочи. Стандартный потенциал хингидронного электрода 0,72 В (при комнатной температуре). Поэтому при титровании кислот индикаторный электрод в испытуемой цепи является положительным плюсом ( нао.к.э. 0,25 В). В процессе титрования с ростом pH раствора потенциал хингидронного электрода уменьщается, а при достижении pH S становится [c.68]

    При аналитич, потенциометрич. титровании существенным является резкое изменение потенциала в момент конца титрования. Поэтому потенциометрич. титрование может проводиться как при непрерывном измерении эдс компенсационным методом, так и с помощью различных упрощенных схем, позволяющих определить только скачок эдс в момент конца титрования (титрование по скачку потенциала). Потенциометрич. измерения применяют не только при работе с водными р-рами, но также и в неводных и смешанных растворителях. Однако в этом случае возникают значительные трудности, связанные с элиминированием диффузионного потенциала (фазового) на границе раствор—вспомогательный электрод. Поэтому в неводных и смешанных растворителях потенциометрич. титрование применяется чаще всего как аналитич. метод. [c.141]


    Указанные недостатки компенсационного метода заставляют нередко прибегать к измерению э. д. с. при помощи ламповогО электрометра, представляющего собой ламповый вольтметр постоянного тока. Измеряемая э. д. с. подается на вход лампы, вызывая изменение потенциала сетки и, следовательно, силы анодного тока. Чувствительный гальванометр, регистрирующий это изменение, позволяет прочесть величину поданной э. д. с. Высокое входное сопротивление лампового электрометра, достигающее величины 10 °—10 ом, обеспечивает протекание весьма малого тока в элементе. Оно же позволяет измерять э. д. с. элементов с высоким внутренним сопротивлением. Применение лампового электрометра удобно потому, что позволяет непосредственно по шкале прибора прочесть величину э. д. с., не прибегая к компенсации. Однако точность отсчета при этом, конечно, меньше, чем достигаемая при помощи обычного потенциометра. [c.236]

    В противном случае значения измеряемого потенциала будут искажены поляризацией электрода за счет тока измерения. Поэтому для измерения электродных потенциалов обычно применяют компенсационный метод, фиксируя отсутствие тока в цепи с помощью гальванометра высокой чувствительности. [c.95]

    Измеренное компенсационным методом значение потенциала оксиднортутного электрода в растворе с неизвестным pH по насыщенному каломельному электроду при 298,2 К равно 0,0300 В. Определить значение pH раствора, в котором производили измерения. [c.48]

    Простейший тип стеклянного электрода широко применяется в настоящее время для измерения pH схема цепи из стеклянного электрода и стандартного каломельного электрода показана на рис. 70. Электрод представляет собой полый шарик 1 из тончайшего стекла, в который наливается электропроводный раствор, например 0,1 н. раствор соляной кислоты, и вставляется серебряная проволочка с поверхностью, покрытой хлористым серебром, или платиновая проволочка. Электродом сравнения является стандартный ка- ломельный электрод 2, включенный в цепь для определения величины потенциала (калибровки) самого электрода 1. Стеклянный электрод после калибровки уже может служить особым электродом— стандартным. Недостатком первых стеклянных электродов было слишком большое омическое сопротивление стекла шарика 1, что сильно снижало точность определений. Это затруднение преодолевают, во-первых, применяя статические электрометры 3 (рис. 70) или для измерений компенсационным методом особенно чувствительные гальванометры во-вторых, чувствительность и точность измерений увеличивают, применяя шарики или пробирочки из особенно тонкого стекла, толщиной в несколько микронов, что увеличивает их электропроводность. В последнее время специально выдувают шарики из особого стекла. В других случаях нижние отверстия трубочек заплавляются тонкими стеклянными пластинками 1 (см. рис. 71). Следует также применять наиболее электропроводное стекло, например специальное стекло, содержащее 10% Ь1гО. [c.214]

    Самый первый и в настоящее время наиболее популярный метод определения pH основан на измерении э.д.с. Два водородных электрода помещают в ячейку, в которой концентрация раствора в одном отделении известна. Потенциал измеряют компенсационным методом по Погген-дорфу. Водородный электрод открыт М. Ле Бланом [589] в 1893 г., но в той форме, в которой применяется сейчас, он предложен Дж. Уилсоном и Э. Керном [590]. Я. Залес-ки II Э. Зальм также измеряли pH с помощью водородного электрода, а С. Сёренсен объединял водородный электрод с каломельным. Еще раньше каломельным электродом пользовался Кольрауш. [c.214]

    Описываемый ниже прибор может быть применен при потенциометрическом титровании и при дургих работах, когда необходимо измерять потенциал на электродах или его изменение во времени. Несмотря на простоту, прибор стабилен и обладает большой точностью. По принципу работы он может быть использован как прямопоказывающий или нулевой. Первый способ (с непосредственным отсчетом) можно применять, когда необходима быстрота измерений в этом случае микроамнерметр может быть заменен самопи-шупщм прибором. Если же прибор используют в качестве нуль-индикатора, то потенциал измеряют компенсационным методом, который обеспечивает получение большей точности измерений. [c.255]

    Измерение потенциала проводилось компенсационным методом с помощью потенциометра Р-300. Нуль-инструментом служил милливольтметр постояного тока В-2-3. В качестве электрода сравнения использовался насыщенный каломельный полуэлемент, все тотенциалы затем пересчитывались по водородной шкале. [c.66]

    Основная задача потенциометрического обнаружения к.т.т. -прослеживание изменения э.д.с. гальваническог-о элемента, состоящего из исследуемого полуэлемента с индикаторным электродом и полуэлемента сравнения, обычно насыщенного каломел ного (нас. к.э.) или хлорид-серебряного электрода (х.с.э.), потенциал которых постоянен. Независимо от техники измерения э.д.с. (компенсационным методом или с современными pH метрами) классическим методом наховдения к.т.т. является обнаружение скачка потенциала, отвечаю[цего моменту завершения хи-м ической реакции в испытуемом растворе. [c.136]

    Титрование выполняют по классическому компенсационному методу измерения э.д. с. цепи с примененпем индикаторного хингидронного электрода. Испытуемый раствор титруют стандартным раствором щелочи. Стандартный потенциал хингидронного электрода н /с,н.(он), = 0,72 В. Поэтому при титровании кислот хингидронный электрод в цепи является положительным полюсом ( к,э.с.—0,25 В). В процессе титрования с ростом pH раствора потенциал хингидронного электрода уменьшается, а при достижении pH—8 становится меньше к.э.с.. Вследствие этого приходится переключать полюса хингидронного электрода и электрода сравнения. [c.125]

    Электродвижущую силу гальванических элемент тов измеряют компенсационным методом. Схема ус- тановки для измерения электродвижущей силы компенсационным методом дана на рис. 50. Источник постоянного тока, обычно электрический аккумулятор, подключают к концам реохорда ab. Элемент, эдс которого измеряется, подключают к реохорду в точке а и через гальванометр к подвижному контакту с. Аккумулятор и исследуемый элемент включают таким образом, чтобы их токи протекали навстречу друг другу, т. е. их электродвижущие силы Егкк и компенсируются. Перемещая подвижной контакт с реохорда ab находят такое его положение, при котором гальванометр покажет отсутствие тока. Это оз- начает, что падение потенциала на участке ас точно равно электродвижущей силе исследуемого элемен-. та. Тогда можно записать следующее отношение ExI aKK — ас[аЬ. [c.139]

    Определение действия реагентов на изменение фильтрационных сопротивлений по потенциалам протекания. Потенциалы протекания при фильтрации различных жидкостей определяются компенсационным методом на установке, представленной на рис. 44. Опыты проводятся на естественных проэкстрагированных образцах керна (с1 = (30—40) 10 м I = = (40-50) 10 м),отмытых от солей и высушенных до постоянной массы [24]. Для измерения потенциалов протекания используются хлорсереб-ряные электроды диаметром 0,2 10" м. После подготовки и опрессовки установки образец керна, насьпценный исследуемым раствором, упаковывается в кернодержатель и при внешнем атмосферном давлении замеряется потенциал асимметрии, возникающий из-за погрешностей электродов, который должен быть стабильным в течение проведения экспериментов. После этого при заданных градиентах давления через образец фильтруется исследуемый раствор и замеряется потенциал протекания. Разность между замеренными значениями потенциала и потенциалом асимметрии является истинным значением потенциала протекания для заданных градиентов давления. Каждый эксперимент проводится не менее трех раз, и определяется среднее значение потенциала протекания для данного градиента давления. [c.118]

    Потенциометры. Потенциометрическая усхановка состоит из индикаторного электрода и элёктрода сравнения, погруженных в анализируемый раствор. Потенциал индикаторного электрода финд такой гальванической ячейки измеряют относительно стандартного электрода фст- Если в цепи отсутствует ток, поляризующий электроды, разность потенциалов Аф зависит только от изменения потенциала финд и отличается от него на постоянную величину фс . В практике используют два способа измерения разности потенциалов двух электродов компенсационный и некомпенсационный. Наиболее распространенный и надежный способ измерения э. д. с. потенциометрической ячейки — компенсационный метод. Он основан-на компенсации двух противоположно направленных электродвижущих сил. На электроды ячейки налагают э. д. с внешнего источника постоянного тока, противоположно направленную э. д.,с. гальванической ячейки. При установившейся компенсации в цепи нет тока, э. д. с. ячейки и э. д. с. источника равны. В некомпенсационном методе э.д.с. гальванического элемента измеряют непосредственно гальванометром, последовательно с которым включают большое сопротивление и источник постоянного тока. Такая схема позволяет наблюдать изменение э.д.с. гальванического элемента по изменению силы тока в цепи. [c.121]

    Обычно ДЛЯ измерения относительного электродного потенциала пользуются двумя полуэлементами — одним с электродом, потенциал которого измеряется С, и другим — с нормальным водородным электродом Р (рис. 95). Система из двух полуэлементов называется гальвани-. ческим элементом. Электродвижу1цая сила (э. д. с.) Е гальванического элемента, равная разности потенциалов полуэлементов, определяется компенсационным методом. Полуэлементы присоединяются к цепи внешнего источника электричества (например, аккумулятора А) таким образом, чтобы положительный полюс аккумулятора был соединен с положительным полюсом исследуемого гальванического элемента, а отрицательный полюс аккумулятора — с отрицательным полюсом гальванического элемента. Перемещая движок О, можно добиться того, что гальванометр С (очень чувствительный измеритель [c.283]

    При компенсационном методе измерения потенциалов не исключена возможность поляризации элемента или электрода и получения по этой причине искаженного значения потенциала. В процессе последовательного приближения к точке компенсации мы неизбежно замыкаем измеряемый элемент на чарть сопротивления потенциометра, при этом через измеряемый элемент протекает ток, который его поляризует. По этой причине для измерения электродвижущих сил гальванических элементов употребляются потенциометры с большим внутренним сопротивлением — 10 2 и выше на 1 тУ. Помимо этого, имеется вероятность поляризации элемента даже при достижении компенсации. Момент достижения компенсации устанавливается по отсутствию отклонения нульинструмента. Если в схеме при измерении взят нульинстру-мент с чувстительностью 1-10 А/деление, то тока силой в 10 А мы уже не обнаружим и будем считать, что достигнута полная компенсация. Рассмотрим, какая поляризация может возникнуть в результате протекания тока силою в 10 А. Возьмем элемент с одним практически не поляризующимся электродом (таковым при достаточных размерах [c.214]

    Метод поляризационных кривых. Для уяснения этого метода разберем простейший случай разряда водородного иона на платиновом катоде в растворе серной кислоты. Будем постепенно увеличивать напряжение злектролизующего тока на электродах, замечая при этом изменения потенциала на катоде, а также силу тока, проходящего через раствор серной кислоты. Измерения напряжения и силы тока ведут с помощью милливольтметра и миллиамперметра, а определение потенциала катода — компенсационным способом. На абсциссе откладывают величины потенциала е, а на ординате — соответствующие силы тока I. Кривая на рис. 94 показывает, что вначале, при постепенном увеличении силы тока, величина е растет довольно быстро и кривая проходит вблизи абсциссы и лишь по достижении некоторого предела дает определенный перегиб, резко поднимаясь вверх. Потенциал электрода, соответствующий началу подъема силы тока, называют потенциалом разряда. Очевидно, что такой резкий подъем силы тока возможен только тогда, когда приложенное внешнее напряжение хотя бы на небольшую величину превышает электродвижущую силу гальванической пары, образующейся в результате электролиза. В рассматриваемом случае такой парой будет платиновый катод, насыщенный водородом, т. е. [c.263]

    Основным методом исследования кинетики электрохимических реакций является получение кривых, передающих связь между потенциалом электрода под током и плотностью тока. Эти кривые называются обычно I — е (или поляризационными) кривыми. Анализ формы поляризационных кривых, а также анализ характера их зависимости от состава раствора, температуры и других физико-химических параметров, позволяют получить довольно полные сведения о природе изучаемого электродного процесса. Поляризационные кривые снимают чаще всего по прямому компенсационному методу. В этом случае ка исследуемый электрод подается постоянный ток и измеряется установившееся значение потенциала или, точнее, значение разности потенциалов между исследуемым электродом и соответствующим электродом сравнения. При таком способе измерения (рис. 49) в величину потенциала включаются омические потери в контакте (кбод), в подводящем проводнике (до точки разветвления компенсационной и поляризационной схем — 180 ), в самом электроде ( еом) и в слое электролита между электродом и капиллярным концом электролитического соединительного ключа (збод). Омические потери напряжения в металлических проводниках обычно малы и их всегда можно или снизить до желаемой величины (увеличением сечения проводника, сокращением его длины и т. п.), или учесть на основании прямых измерений и расчетов. Падение напряжения в электролите труднее поддается учету и может составить заметную долю от всей измеряемой величины. Кабановым были предложены расчетные формулы, по которым можно получить ориентировочную величину омического падения напряжения, если известны геометрия электрода и способ подведения к нему электролитического ключа, а также удельная электропроводность раствора. Вследствие конечной скорости транспортировки ионов, слой электролита в непосредственной близости к электроду имеет состав, отличный от состава исходного раствора. Кроме [c.322]

    Одно время существовало мнение, что смещение потенциала при наложении тока всегда является результатом падения напряжения в некотором гипотетическом переходном слое. Стремление проверить справедливость такого предположения привело к созданию коммутаторного компенсационного метода, при котором потенциал электрода измеряется через короткий промежуток времени после выключения поляризующего тока. В ранних работах (Ньюбери, 1914—1916), выполненных по этому методу, были получены результаты, резко отличающиеся от тех, какие при аналогичных условиях дает прямой компенсационный метод. Как правило, величины поляризации оказывались при этом меньшими, а иногда даже и характер зависимости потенциала от плотности тока был иным. Усовершенствование коммутаторного метода, связанное с применением электронных схем, позволило уменьшить промежуток времени между выключением тока и измерением потенциала и дало возможность варьировать величину этого промежутка. Если данные, полученные через различные малые отрезки времени, экстраполировать до нулевого времени, как это делали, например, Глесстон (1924) и Хиклинг (1941), то оба метода дают результаты, совпадающие между собой в пределах ошибок опыта. Таким образом было доказано, что оба метода — и прямой, и коммутаторный — могут применяться для снятия поляризационных кривых. Совпадение резуль- [c.328]

    Основным методом Исследования кинетики электрохимических реакций является получение кривых, передающих связь между потенциалом электрода под током и плотностью этого тока. Такие кривые называются обычно г—е- или поляризационными кривыми. Анализ формы поляризационных кривых и изучение характера их зависимости от состава раствора, температуры и других физикохимических параметров позволяют получить довольно полные сведения о природе данного электродного процесса. Поляризационные кривые снимают чаще всего по прямому компенсационному методу. В этом случае на исследуемый электрод подают постоянный ток и измеряют установившееся значение потенциала или, точнее, значение разности потенциалов между исследуемым электродом и соответствующим электродом сравнения. При таком способе измерения (рис. 60) в величину потенциала включаются омические потери в контакте кБош в подводящем проводнике еом (до точки разветвления компенсационной и-поляризационной схем) в самом электроде 2бом и в слое электролита между электродом и капиллярным концом электролитического соединительного ключа зБом. [c.396]

    Одно время существовало мнение, что смещение потенциала при наложении тока всегда является результатом падения напряжения в некотором гипотетическом переходном слое. Стремление проверить справедливость такого предположения привело к созданию коммутаторного компенсационного метода, при котором потенциал электрода измеряется через короткий промежуток времени после включения поляризующего тока. В ранних работах (Ньюбери, 1914—1916), выполненных по этому методу, были получены результаты, резко отличающиеся от тех, какие при аналогичных условиях дает прямой компенсационный метод. Как правило, величины поляризации оказывались при этом меньшими, а иногда даже и характер зависимости потенциала от плотности тока был иным. Усовершенствование коммутаторного метода, связанное с применением электронных схем, позволило уменьшить промежуток времени между включением тока и измерением потенциала и дало возможность варьировать величину этого промежутка. Если данные, полученные [c.397]

    Выгюлпение гютенциометрическнх определений можно, значительно упростить. Описанные до спх пор анализы выполняют компенсационным методом потенциометрического титрования. При анализе абсолютное значение электродного потенциала не имеет роли, важно изменение потенцпала в точке эквивалентности — скачок потенциала. Это скачок потенциала во многих случаях можно обнаружить при помощи более простой схемы измерения, называемой некомпенсациониой. [c.388]

    Приборы для измерения потенциала компенсационным методом называют потенциометрами, в них используется схема уравнове- шейного моста постоянного тока. Основой такого прибора, схема которого изображена на рис. 35, является высокоомный магазин сопротивлений Ям, включенный последовательно с тарированным сопротивлением 10 183 ом и переменным сопротивлением 7 в цепь внешнего источника постоянного тока — аккумуляторной батареи [c.95]


Смотреть страницы где упоминается термин Потенциал измерение компенсационным методом: [c.86]    [c.177]    [c.298]    [c.148]    [c.157]    [c.327]    [c.328]    [c.11]    [c.713]   
Физико-химические методы анализа Изд4 (1964) -- [ c.399 ]

Физико-химические методы анализа Издание 4 (1964) -- [ c.399 ]




ПОИСК





Смотрите так же термины и статьи:

Компенсационный метод измерения

Компенсационный метод потенцией

Метод потенциале

Потенциал измерения



© 2025 chem21.info Реклама на сайте