Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность НТК, азеотропы

    Применение мембран особенно удобно для разделения азеотроп ных смесей. В этой связи все больший интерес проявляется к разделению испарением жидкости на поверхности мембраны. Трудность состоит в обеспечении подвода большого количества тепла к поверхности мембраны для испарения жидкости. Альтернативой этому методу является разделение предварительно испаренной жидкости. Но промышленного значения эти способы в химической технологии пока не получили. [c.21]


    Тройные азеотропы. Поверхность общего давления и поверхность температур насыщения для жидкой и паровой фаз [c.219]

    Роль геометрической структуры (пористости) адсорбента и химии его поверхности. Вид изотермы адсорбции из растворов. Положительная и отрицательная гиббсовская адсорбция. Адсорбционные азеотропы. [c.299]

    На рис. V. 48 приведены примеры обычных диаграмм фазового равновесия в системах, содержащих один и два бинарных азеотропа с минимумом температуры кипения и максимумом давления. На их проекциях хорошо видны лощины и хребты (штриховые линии), порождаемые на поверхностях температур кипения или давления бинарными азеотропами. При этом хребет на поверхности давлений соответствует впадине на поверхности температур кипения и, наоборот, впадина на поверхности давлений сопровождается наличием хребта на поверхности температур. Рис. V. 49 изображает фазовые равновесия в системе, имеющей тройной азеотроп с минимумом температуры кипения и максимумом давления пара. [c.325]

    Диаграммы состояния тройных систем строят, как правило, в условиях постоянства общего давления или температуры. В первом случае над треугольником концентраций располагается поверхность температуры кипения раствора и над нею поверхность конденсации. Поверхности сходятся над углами треугольника (температуры кипения и конденсации чистых компонентов) и касаются друг друга в точках бинарных и тройных азеотропов, если таковые в системе образуются. Между поверхностями заключена гетерогенная область. [c.80]

    Если в одной из тройных систем бинарный азеотроп является устойчивым (неустойчивым) узлом, а в другой — седлом, то в 4-компонентной системе он образует седло первого (второго) порядка без разделяющей поверхности. [c.42]

    З". Если в обеих тройных системах бинарный азеотроп является седлом, то в 4-компонентной системе он образует седло с разделяющей поверхностью. При этом, если в двойной системе бинарный азеотроп является неустойчивым (устойчивым) узлом, то в 4-компонентной системе он образует седло первого (второго) порядка. [c.42]

    Если точка тройного азеотропа в тройной системе является устойчивым (неустойчивым) узлом, то в 4-компонентной системе она образует или устойчивый (неустойчивый) узел, или седло первого (второго) порядка без разделяющей поверхности. [c.46]

    Если тройной азеотроп в тройной системе является седлом, то в 4-компонентной системе он также будет седлом первого или второго порядка с разделяющей поверхностью. [c.46]


    Таким образом, в 4-компонентных системах возможны два типа 4-компонентных седловых азеотропов, в каждом из которых узловая поверхность будет разделять окрестность азеотропа на две области. При этом в случае седла первого порядка в узловой поверхности дистилляционные линии образуют устойчивый узел, а в случае седла второго порядка — неустойчивый. [c.48]

    Как видно, внутри тетраэдра все дистилляционные линии расходятся из точки тройного азеотропа р10 и заканчиваются или в точках компонентов т, I, или в точке бинарного азеотропа 1т. Семейство дистилляционных линий, соединяющих определенную пару особых точек, например, 10 и т, образует дистилляционную Область Р10—т. В данном случае внутри тетраэдра имеется две трехмерные дистилляционные области р10—т и 10—I и одна двумерная Р10 — 1Т. Последняя порождена разделяющей поверхностью седла 24 в точке 1т. [c.51]

    Обозначения, как на рис. III, I, но точки отвечают компонентам или азеотропам. Двойными штрихами перечеркнуты дистилляционные линии, образующие контур разделяющей поверхности, порожденной четверным седловым азеотропом. [c.52]

    Остановимся на различиях в свойствах седловых азеотропов. Рассмотрим седла порядка 1 и п —2. В этих случаях одна из гиперповерхностей имеет размерность п — 2, т. е. размерность, на единицу меньшую, чем размерность концентрационного симплекса. Соответственно этому гиперповерхность будет разделять окрестность особой точки на две области. С наличием разделяющих поверхностей может быть связан ряд особенностей дистилляции и ректификации. [c.55]

    Таким образом, сумма особых точек, расположенных в вершииах тетраэдра и на его ребрах и входящих в первое уравнение системы (17.21), равна соот-. ветственно сумме особых точек, расположенных в вершинах квадрата и на сторонах. В то же время ни одна из особых точек, расположенных на гранях тетраэдра (тройные азеотропы), не представлена в квадрате. Что касае гся четверных азеотропов, то возможны случаи, когда поверхность химического равновесия пройдет через этот азеотроп. С учетом этого можно записать [c.197]

    Наличие азеотропа и приводит к появлению разделяющей линии 2 типа [29] в трехкомпонентной системе АВО. Таким образом, в четырехкомпонентной системе появляется, наряду с плоскостью ВМО еще одна разделяющая поверхность [c.207]

    В зависимости от свойств системы характер поверхности давления (при 7 = onst) различен. В простейшем случае идеальной системы она является плоскостью. В системах с положительными отклонениями от закона Рауля поверхность давления располагается выше, а в системах с отрицательными отклонениями— ниже этой плоскости. Наличие азеотропных точек в бинарных системах, входящих в трехкомпонентную, обусловливает появление на поверхности давления выступов или впадин. Характер поверхности давления в трехкомпонентной системе еще осложняется влиянием совокупного взаимодействия всех компонентов друг с другом. Точка тройного азеотропа, отвечающая экстремуму давления, геометрически определяется как точка касания поверхности давления и плоскости, параллельной плоскости концентрационного треугольника. Рассекая поверхность давления плоскостями, параллельными плоскости треугольника составов, получаем в сечении линии — изотермы-изобары, которые должны быть замкнутыми вблизи точки тройного азеотропа (рис. 20, а). Поверхность давления может иметь такой ход лишь при наличии бинарных азеотропов. [c.74]

    При наличии в трехкомпонвнтной системе двух бинарных азеотропов одинакового характера (положительных или отрицательных) между азеотропными точками на поверхности давления проходит хребет или лощина (рис. 20,6). [c.75]

    Большой интерес представляют системы, в которых имеются как положительные, так и отрицательные бинарные азеотропы. Два положительных азеотропа или положительный азеотроп и низкокипящий компонент, не входящий в состав этого азеотропа, порождают образование хребта на поверхности давления. Два отрицательных азеотропа или один отрицательный азеот-. роп и высококипящий компонент, не входящий в состав этого азеотропа, обусловливают появление впадины. При одновременном наличии в тройной системе хребта и впадины может получиться седловина на поверхности давления (рис. 20, в). При наличии седловины к поверхности давления можно провести параллельную концентрационному треугольнику касательную плоскость. Точка касания отвечает седловидному или положительно-отрицательному азеотропу. В соответствии с геометрической природой седловины давление (или температура) в точке седловидного азеотропа не должно быть ни самым большим, ни самым малым в системе. Следоватепьно, седловидные азеотропы не имеют экстремума температуры или давления. Такой азеотроп впервые был обнаружен Райндерсом и де Минье [79] пр исследовании системы ацетон—хлороформ—вода. [c.75]

    Если в такой системе образуется азеотроп, состав которого изображается точкой, лежащей в области ограниченной взаимной растворимости (гетероазеотроп), то максимальное давление должны иметь все смеси, состав которых отвечает ноде, проходящей через точку состава гетероазеотропа. Таким образом, в системах, имеющих гетероазео-тропы, касание поверхности давления и горизонтальной плоскости происходит не в точке, как в случае систем гомогенных в жидкой фазе, а по отрезку прямой —ноде. [c.76]


    Образование азеотропов в трехкомшонентной системе обусловливает усложнение зависимости температуры кипения смесей От состава. На поверхности температур кипения появляются В1МЯТИНЫ или возвышения, могущие вызвать образование не- [c.114]

    Будет ли вершина концентрационного треугольника или азеотропная точка точечной изотермой-изобарой или через ее пройдет изотерма-изобара конечной протяженности зависит от соотношения температур кипения компонентов системы и азеотропов. Из очевидных геометрических соображений следует, что вершина концентрационного треугольника является точечной изотермой-шобарой, если вблизи нее по сторонам треугольника концентраций кривые температур кипения обеих бинарных смесей имеют наклон одинакового знака, т. е. температуры кипения возрастают или убывают по направлению к вершине. В этом случае часть поверхности температуры кипения вблизи вершины (поднята или опущена и концевые точки линии пересечения этой поверхности с горизонтальными плоскостями (7 = onst) будут лежать на сторонах, сходящихся в вершине. В этом легко убедиться, рассматривая рис. 35—37, на которых изображены изотермы-изобары дистилляционные линии для ряда трехкомпонентных систем. Если вблизи вершины кривые температур кипения имеют разные наклоны, то, как -можно убедиться из рис. 35—37, через эту вершину проходит изотерма-изобара конечной протяженности. [c.118]

    Кривые разделяющие линии ректификации получаются при наличии в системе хребта на поверхности температуры, обусловленного образованием в системе отрицательных азеотропов. Как уже было показано, хребет может проходить между двумя точками отрицательных бинарных азеотропов (как в системе ацетон—хлороформ—изопропиловый эфир) или между точкой отр Ицательного бинарного азеотропа и противолежащей вершиной, если она соответствует компоненту с наивысшей температурой кипения (как в системе ацетон—хлороформ—бензол). Характерной особенностью систем, имеющих кривую разделяющую линию, является то, что при ректификации смесей, точки оостава которых лежат в областях, ограниченных этой кривой, вторая фракция представляет фракцию переменного состава и [c.132]

    В системах третьего типа (рис. 60, в) компонент, добавляемый к бинарной смеси АВ, имеет температуру кипения, превышающую температуру кипения компонентов Л и В, Это обусловливает образование хребта на поверхности температуры между точками М к Р. При прибавлении к азеотропу М компонента Р получаются смеси, точки состава которых лежат в области ректификации тМР. Как уже было показано, при ректификации таких смесей в качестве первой фракции отгоняется некоторое количество азеотропа т. вторая фракция является фракцией переменного состава, а третьей фракцией является компонент Р (если tpytм) или азеотроп М (если tp[c.138]

    На конфигурацию поверхностей давления во всем диапазоне трехкомнопентных составов сильно влияют (но Т1е являются полностью определяющими) особенности трех ограничивающих бинарных систем. Другими словами, поверхности, соединяющие три бинарные системы, могут иметь впадины и хребты, которые расположены в соответствии с точками максимума п минимума, имеющимися на периметре концентрационного треугольника (или диаграмме составов). Часто трехкомпонентная система, содержащая два и более азеотропа с минимумом температуры кинения, характеризуется наличием впадины на поверхности температуры, которая обусловливается существованием бинарных азеотропов с минимумом температуры кипения, однако наличие бинарных азеотропов ио гарантирует существование тройного азеотропа. Для точного определения конфигурации этих поверхностей необходимы обширные экспериментальные данные по всей площади концентрационного треугольника. Однако, как только станут известны эти поверхности, становится и очевидным общее направление протекания процесса ректификации. [c.221]

    На рис. 1Х-8 показана поверхность температуры насыщенной жидкости для системы метилэтилкетон — м-гептан — толуол, которая разделена линиями постоянной температуры изотермами (сплошные линии). Линии, принадлежащие поверхности температуры Н гидкости ири температурах 88 и 104 С, соединяются стрелками (соединительные линии или конноды) с изотермами соответствующих поверхностей температуры пара. Стрелками соединены точки, выражающие состав жидкости и пара, находящихся в равновесии, и поэтому характеризующие разделение (обогащение), достигаемое на ступени равновесия. Изотермы показывают, что высшая точка поверхности соответствует чистому толуолу, низшая точка — бинарному азеотропу МЭК — гептан. Все остальные точки диаграммы занимают промежуточное положение, поэтому среди них пе существует тройного азеотропа. [c.221]

    Трехкомпонентная система может иметь любую комбинацию бинарных азеотропов с минимумом и максимумом температур кипепия, а также тройной азеотроп. В литературе описано несколько возможных комбинаций и показано, каким образом можно изучить особенности трехкомпонентной системы периодической ректификацией. При периодической ректификации состав кубового продукта (остатка) должен изменяться, двигаясь па концентрационном треугольнике по прямой линии от состава верхнего продукта (это утверждение верно, если в колонне удерживается незначительное количество жидкости). Верхнему продукту обычно соответствует некоторая низкая точка на поверхности температуры, которая может быть достигнута при движении от состава куба (загрузки) без прохождения через хребты, иными словами, температурный профиль колонны не может иметь никаких максимумов или минимумов (предполагается, что ректификационный аппарат имеет достаточное число тарелок разделения). [c.222]

    Система метанол — хлористый метилен — ацетон, показанная на рис. IX-9, имеет три таких участка MDE, DEA и ЕАС. Точка 1 на участке МОЕ отвечает составу исходной смеси. Самая нижняя точка иа поверхности температуры для такой трехкомпонентной системы приходится на бинарный азеотроп метанол — хлористый метилен (точка Е). К этой точке можно подойти из точки 1 (если, вообще, практически можно ее достигнуть). В данном случае первым верхним продуктом будет азеотроп метанол — хлористый метилен, как это видно из кривой периодической разгонки для точки 1 на рис. IX-10. Состав кубового продукта (остатка) будет отходить от состава верхнего продукта, как показывают стрелки (см. рис. IX-9) до тех пор, пока не исчерпается хлористый метилен и останется только бинарная система метанол — ацетон. Когда состав кубового продукта достигает основания концентрационного треугольника, минимальная температура кипения смеси соответствует бинарному азеотропу метанол — ацетон, который и будет вторым верхним цродуктом. Состав кубового продукта [c.223]

    С, т. кип. 86° С. Смешивается с водой во всех отношениях. Азеотроп-ная смесь с водой содержит 68,4% НХОз и кипит при 121,9° С. Обычная 96—98%-ная НКОз — жидкость красно-бурого цвета. А. к. — сильный окислитель, реагирует почти со всеми металлами, образуя с ними соответствующие оксиды или соли — нитраты и выделяя оксиды азота. Устойчивы к действию А. к. золото, платина, родий, иридий и тантал. Такие металлы, как железо, хром, алюминий, пассивируются концентрированной А. к. за счет стойкости к действию А. к. оксидной пленки, образующейся на ее поверхности. Концентрированная А. к. окисляет серу до серной кислоты, фосфор — до фосфорной. Многие органические соединения под действием А. к. разрушаются и воспламеняются. Разбавленная А. к. более слабый окислитель, чем концентрированная продуктами восстановления ее сильными восстановителями могут быть гемиоксид азота, свободный азот н нитрат аммония. В лаборатории А. к. получают действием на ее соли концентрированной N3804 при нагревании. В промышленности разбавленную (45—55%) А. к. получа- [c.11]

    Таким образом были получены диметиламид лизергиновой кислоты [10] и пептиды [111. Амиды можно также синтезировать, пропуская пары кислоты и амина над нагретой до 280 °С поверхностью силикагеля [12] и отгоняя воду в виде азеотропа с ксилолом после использо вания каталитических количеств ионообменной смолы амберлит Ш 120 (Н" ) [13]. Но даже в водных растворах имеется некоторая тен -денция к образованию равновесной смеси амида, амина и кислоты, особенно в случае двухосновных кислот [141. [c.385]

    В стандартной ловушке конденсат азеотропа из холодильника стекает непосредственно на поверхность перелива, образуя эмульсию. При этом часть неотделившейся воды стекает обратно в колбу с бензолом, что искажает истинную скорость выделения воды. Для устранения этого недостатка, а также возможности налипания капель воды на стенках ловушки в центре установили стеклянную трубку, воронкообразным концом выступающую над поверхностью перелива и принимающую конденсат из холодильника. Разделение азеотропа начинается в холодильнике, заканчивается в центральной трубке. Капли воды направляются в измерительную часть, по движению мениска в которой измеряют скорость выделения воды. Цена деления шкалы измерительной части ловушки 0,01 мм, что позволяет с достаточно высокой точностью регистрировать изменения скорости выделения воды. [c.29]

    Эксперим. исследования систем с тройными A. . очень трудоемки. Поэтому большую роль здесь играют теоретич. представления о возможных видах диаграмм состояния. Широко используется для этого правило азеотропии, к-рое качественно связывает кол-во и типы двойных и тройных азеотропов в системе. Поскольку в тройных системах изо-барич. поверхности т-р кипения имеют хребты и впадины, то для проведения ректификации удобными становятся выделенные ими отдельные области параметров. [c.47]

    В некоторых случаях на диаграммах температура — состав или давление — состав наблюдается более одного локального максимума или минимума. На рис. 4.24,а показан редкий пример двухкомпонентной смеси, образующей азеотроп как с максимальной, так и с минимальной температурой кипения. Гораздо чаще на поверхностях диаграмм тройных систем наблюдаются локальные минимумы и максимумы. На рис. 4.24, 6 показано — гребень на поверхности диаграммы имеет минимум, называемый седловидной точкой. Разнообразие видов поверхности равновесий следует ожидать, поскольку седловидная точка была предсказана сто лет назад Оствальдом, и при математическом поиске азеотропных смесей следует иметь в виду возможность появления локальных экстремумов. На рис. 4.25 показаны некоторые возможные и гипотетические виды изотермических диаграмм кипения. [c.228]

    Состав идеального раствора х = 0,5 наиболее выгоден, если компоненты имеют равное сродство к поверхности адсорбента. Если компонент 2 имеет преимущественное сродство к поверхности (Оа < 0), то адсорбционный слой обогащается этим компонентом, смешая состав раствора, при котором адсорбция равна нулю, в сторону повышенного содержания растворенного компонента (рис. 3.30 кривая 1). Такая тенденция сохраняется при отклонении от идеальности раствора (параметра О ) в любую сторону. Адсорбционньш азео-тропом называется раствор, который повторяет по составу адсорбционный слой, т. е. дает нулевую величину адсорбции. При точка азеотропа смещается в [c.589]

    Многокомпонентные азеотропы, соответствующие максимуму давления пара, называются положительными, минимуму давления пара — отрицательными, а седловинной точке — седловинными или положительно-отрицательными. Все три тнпа азеотропных смесей встречаются на практике. Отличительная особенность седловинного азеотропа заключается в том, что температура его кипения не является ни наивысщей, ни наинизщей температурой кипения жидких смесей. Например, в тройной системе хлороформ — метиловый спирт — метилацетат первый компонент образует бинарный азеотроп со вторым с температурой кипення при атмосферном давлении 53,4° С, а с третьим — с температурой кипения 53,8° С. Эти положительные бинарные азеотропы порождают образование лощины на поверхности температур кипения. Благодаря наличию отрицательного бинарного азеотропа метилацетат — хлороформ на поверхности температур кипения получается хребет, простирающийся от этого азеотропа до вершины чистого метанола, имеющего более высокую температуру кипения, чем другие компоненты. В результате пересечения хребта и лощины на поверхности температур кипения получается седловина и образуется тройной седловннный азеотроп с температурой кипения 56,4° С. [c.12]

    В трех- и многокомпонентных системах, образованных ограниченно смешивающимися веществами, при переходе из области гомогенных жидких смесей в область существования двух жидких фаз число степеней свободы, согласно правилу фаз, уменьшается иа единицу. Следовательно, при переходе из одной области в другую форма поверхности температур кипения (при Я = onst) или давления пара (при Т = onst) должна качественно изменяться. Действительно, при совместном существовании двух жидких и паровой фаз последняя находится в равновесии с обеими жидкими фазами независимо от соотношения их количеств. Если в такой системе образуется гетероазеотроп, т. е. азеотроп, расслаивающийся при конденсации на две фазы, то в равновесии с паром находятся все смеси, полученные из указанных жидких фаз. В таких системах, следовательно, условие экстремума температуры или давления выполняется ие в точке (т. е. для смеси определенного состава), а на прямой линии, соединяю- [c.12]

    Для предсказания возможности образования и свойств трех- и многокомпонентных азеотропных смесей по данным о свойствах бииарных систем в последнее время предложен ряд методов, основанных на использовании уравнений, описывающих условия фазового равновесия. Константы в уравнениях, выражающих условия равновесия в многокомпонентных системах, находятся по опытным данным о свойствах более простых (чаще всего бинарных) систем, образованных компонентами рассматриваемой системы. Наличие экстремальных точек на поверхностях температуры илн давления выявляется путем анализа полученных уравнений. Для облегчения расчетов используются ЭВМ. Известные расчетные Методы определения наличия и свойств трех- и многокомпонентных азеотропов описаны в книге [16]. [c.21]


Смотреть страницы где упоминается термин Поверхность НТК, азеотропы: [c.196]    [c.91]    [c.74]    [c.124]    [c.127]    [c.221]    [c.81]    [c.41]    [c.44]    [c.46]    [c.47]    [c.48]    [c.49]    [c.53]   
Азеотропия и полиазеотропия (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Азеотропия

Азеотропы



© 2025 chem21.info Реклама на сайте