Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды термическая стабильность

    Трициклические ароматические углеводороды. Из двух трициклических ароматических углеводородов — антрацена и фенантрена — последний является более термически стабильным и всегда присутствует в больших количествах в смоле и аналогичных продуктах пиролиза. Большая стабильность фенантрена связана с большей энергией резонанса порядка 110 калорий на моль по сравнению со 104,7 калориями на моль для антрацена. Появление таких углеводородов в крекинг-остатке нефти и угольной смоле может быть результатом пиролиза родственных структур, таких, например, как трициклические нафтены однако они появляются [c.98]


    Преобладающим типом химических превращений при деструктивных процессах переработки нефти является распад углеводородов. Термическая стабильность углеводородов неодинакова и [c.172]

    Термическая стабильность тяжелых углеводородов позволяет нагревать нефть при атмосферной перегонке до 350—360°С, что обеспечивает долю отгона сырья, на 5—10% превышающую сумму отбора светлых в колонне. Если при этом отпаривать в низу колонны от мазута до 10—15% легких фракций, то расход избытка орошения на нижних тарелках концентрационной секции колонны увеличивается до 15—20% от расхода сырья. Однако и этого количества орошения, получаемого при таком испарении нефти и мазута, оказывается недостаточно для четкого отделения тяжелого газойля от мазута. В связи с этим предлагаются схемы перегонки с перегревом нефти или жидкости на нижних тарелках концентрационной части колонны. Рассмотрим некоторые из таких схем. [c.168]

    По мере увеличения молекулярной массы исходного углеводорода термическая стабильность его падает, и преобладающими становятся реакции расщепления молекул по связи С—С. Так, -бутан дегидрируется при крекинге всего на 10% при этом в качестве основных продуктов образуются смеси метана с пропиленом и этана с этиленом. [c.50]

    Более перспективным и эффективным методом получения топлив с высокими энергетическими характеристиками является создание синтетических топлив. Путем синтеза углеводородов можно получить топлива с энергетическими характеристиками на 13—15% лучше, чем у керосина. В настоящее время известны топлива на основе изопарафиновых углеводородов с компактным расположением боковых групп, некоторых нафтеновых углеводородов с боковыми цепями на основе би- и полициклических нафтеновых углеводородов. Характерной положительной чертой этих топлив является также высокая термическая стабильность при температурах до 260° С, а недостатком — высокая вязкость при отрицательных температурах. [c.91]

    Алкилированные ароматические углеводороды. Термическое разложение алкилированных ароматических углеводородов сопровождается значительным числом реакций, на которые оказывают воздействие температура, давление, катализаторы, присутствие водорода или других ароматических углеводородов, действующих как акцепторы водорода, а также олефинов или других продуктов разложения. Так известно, что при пиролизе толуола получаются бензол, дибензил, стильбен, дито-лил, фенилтолил, фенилтолилметан, дитолилметан, дифенил, стирол, нафталин, антрацен и фенантрен. Наличие более длинных боковых цепей или нескольких заместителей увеличивает число возможных реакций однако, несмотря на сложность получаемых продуктов, совершенно ясно обнаруживается одно свойство ароматических кольцевых систем, сохраняющих свою идентичность на протяжении большого количества пиролитических реакций, а, именно, их стабильность тем не менее имеется одна реакция, которая приводит к разрушению ароматических структур — пиролиз в присутствии водорода, особенно в контакте с катализатором, который может служить гидрирующим агентом. В этом случае ароматические кольца сперва гидрируются, а затем расщепляются. Нагревание алкилароматических углеводородов с водородом, особенно в присутствии катализаторов, часто приводит к образованию незамещенных ароматических углеводородов, которые могут подвергаться затем гидрогенолизу. [c.103]


    По мере увеличения молекулярной массы исходного алканового углеводорода термическая стабильность его падает, и преобладающими становятся реакции расщепления молекул по связи С-С. Так, н-бутан дегидрируется при крекинге всего на 10%. [c.16]

    Склонность топлива к нагаро- и лакоотложениям зависит от содержания в топливе ароматических углеводородов, смолистых, веществ, тетраэтилсвинца, сернистых соединений, легкоокисляющихся непредельных углеводородов, термической стабильности топлива. [c.13]

    Преобладающим типом химических превращений при деструктивных процессах переработки нефти является распад углеводородов. Термическая стабильность углеводородов неодинакова и зависит как от их молекулярного веса, так и химического строения и тесно увязана с величиной энергии связей между атомами в молекулах. [c.181]

    В настоящее время оценка стабильности топлив производится по следующим показателям по количеству фактических смол, величине индукционного периода, показателям термической стабильности. Косвенными показателями стабильности являются количество в топливе непредельных углеводородов, органических кислот, серы и сернистых соединений. Эти примеси значительно ускоряют окислительные, полимеризацион-ные и уплотнительные процессы в топливе. [c.27]

    Гидроочистку керосинов проводят для улучшения их качества путем снижения содержания серы, непредельных углеводородов и других примесей. При этом повышается термическая стабильность керосинов, улучшаются характеристики их сгорания, цвет, возрастает стабильность цвета и уменьшается количество осадка при хранении. Гидроочищенные керосиновые фракции могут быть использованы в качестве топлив. [c.28]

    Строение алкильного радикала в металлоорганических антидетонаторах, в частности в ТЭС и ТМС, определяет их термическую стабильность, т. е. момент их разложения в цикле сгорания топлива. При 744 °С в течение 5,6 мс ТЭС разлагается на 65%, а ТМС — всего на 8% [184]. Поэтому в двигателях с высокой степенью сжатия и на форсированных режимах ТМС более эффективен, чем ТЭС, практически полностью разлагающийся до начала предпламенных процессов в последней порции топливо-воздушной смеси. Особенно заметно проявляются антидетонационные преимущества ТМС по сравнению с ТЭС при увеличении концентрации свинца и содержания ароматических углеводородов в бензине (рис. 3.33). [c.172]

    Образование ароматических углеводородов при высокотемпературных процессах, например, при крекинге нефти в интервале температур 400—600° С, коксовании угля при 800—1100° С и пиролизе метана при температурах до 1200° С, свидетельствует об их большой термической стабильности. Эта стабильность объясняется необычайно прочными уг-лерод-углеродными связями в ароматическом ядре и упоминалась еще в правиле Габера (1896), которое гласит, что связь С—С в ряду ароматических углеводородов является более стабильной, чем углерод-водо-родная связь С — Н, тогда как для алифатических углеводородов имеет место обратная зависимость [21]. Причину большей стабильности связей С — С в ароматических углеводородах можно объяснить тем, что их структура напоминает стабильную структуру кристаллического графита, тогда как углерод-углеродные связи алифатических углеводородов аналогичны углеродным связям в термически менее стабильных кристаллах алмаза. [c.93]

    Линейные полиуретаны, полученные из короткоцепных диолов и диизоцианатов, представляют собой высокоплавкие кристаллические термопласты, по свойствам напоминающие полиамиды, что обусловлено сходным строением их основных цепей. Однако обычно полиуретаны плавятся при более низких температурах, а их растворимость оказывается выше, чем полиамидов (например, в хлорированных углеводородах). Термическая стабильность полиуретанов ниже в зависимости от структуры полимера уже при 150— 200 °С начинается заметная диссоциация уретановых групп до исходных функциональных групп расщепление аллофонатных групп начинается даже при 100 °С. Полиуретаны используются для производства волокон. Сшитые полиуретаны применяются в качестве лаков, клеев, покрытий (для тканей и бумаги), эластомеров и пенопластов. [c.226]

    Термодинамика термического разложения метана. Общее представление о термической стабильности метана и его гомологов, по сравнению с термической стабильностью ацетилена, можно получить, рассмотрев зависимость стандартной свободной энергии образования углеводородов из простых веществ, отнесенной к одному атому углерода, от температуры (рис. 33). [c.100]

    Содержание ароматических углеводородов, %, не более Термическая стабильность при 150°С, мг/100 мл 22,0 18,5 22,0 10,0 10,0 [c.189]

    Во всех способах поглотители кислых компонентов должны обладать селективностью, химической и термической стабильностью, низкой упругостью паров и коррозионной способностью, высокой поглотительной способностью и химической инертностью к углеводородам. Кроме того, они должны быть доступными по цене и по мере возможности слаботоксичными. [c.41]


    Керосиновые фракции отвечают требованиям на современные и перспективные реактивные топлива с повышенной плотностью, умеренным содержанием ароматических углеводородов, хорошими показателями по термической стабильности и низкотемпературным свойствам. [c.150]

    Термическая стабильность топлив может быть повышена путем их очистки от гетероорганических соединений и ненасыщенных углеводородов серной кислотой или гидрированием. Высокий эффект получается при [c.113]

    Помимо газообразных продуктов при пиролизе получают жидкие продукты, выход которых сильно зависит от качества сырья. Например, выход жидких продуктов при пиролизе керосино-газой-левой фракции равен 40—50%. Таким образом, около половины сырья превращается в жидкие продукты, для которых характерна высокая концентрация ароматических углеводородов. В легких фракциях присутствуют преимущественно бензол и толуол, в меньших концентрациях — углеводороды Сз, что объясняется большей термической стабильностью бензола. Кроме того, в жидких продуктах находятся олефины, циклоолефины, диены. [c.65]

    Простейшие ароматические углеводороды устойчивы при низких температурах крекинга и межмолекулярная конденсация с потерей водорода начинается нрп температурах выше 500° С бензол, в частности, превращается в дифенил, аналогичные продукты образуются при удвоении молекул толуола, ксилола и нафталина [59, 60]. Для большинства углеводородов термическая стабильность уменьшается с увеличением размеров молекулы нафталин образует динафтил при 475° С, антрацен при той же температуре разлагается с образованием твердых коксоподобных продуктов, у пндена такой распад протекает уже при 290° С. [c.302]

    Поскольку для всех парафиновых, алкилнафтеновых и алкилароматических углеводородов термическая стабильность с удлине- [c.66]

    Сравнение данных о коксовании смол с результатами коксования ароматических углеводородов, рассмотренными в гл. II, показывает, что при небольшом выходе кокса при термических превращениях смол скорость его образования значительно выше, чем в случае ароматических углеводородов. Термическая стабильность смол из-за наличия в их молекулах большого числа связей С— С, сопряженных с ароматическими кольцами, значительно ниже, чем полициклических ароматических углеводородов любого строения. Поэтому накопление асфальтенов при термическом разложении смол происходит значительно быстрее, хотя выход продуктов распада значительно больше, а продуктов конденсации (асфальтенов) — меньше. Низкий выход продуктов конденсации связан с тем, что продукты, летучие в условиях эксперч- [c.49]

    Попытки приложить к высокомолекулярным углеводородам объяснение механизма реакции, принятое для углеводородов меньших размеров, потерпели неудачу ввиду исключительно большо11 сложности химического состава крекируемых продуктов. Тем не менее, было установлено несколько существенных закономерностей. В общих чертах термическая стабильность уменьшается с увеличением размера молекулы это обобщение подтверждается термодинампческпми расчетами. Моншо также сказать, что крекинг-реакция эндотермическая и что скорости разложения уменьшаются в следующем порядке н-парафины, изопарафины, циклопарафпны, ароматические, ароматически-наф-теновые, многоядерно-ароматические углеводороды. [c.298]

    Нафтеновые углеводороды. По своей термической стабильности нафтены занимают положение, промежуточное между парафинами и ароматикой. Они очень часто присутствуют в нефти в виде пяти- и шестичленных Иолец с боковыми алкильными цепями. При крекинге эти цепи рвутся и образуются соединения с длинными цепями, содержащими двойную связь, или соединения с короткой (метильной, этильной) боковой алкильной группой. Конденсированные нафтеновые ядра, как правило, расщепляются с высокой степенью деструктивного разложения. [c.301]

    Рядом исследователей изучалась возможность получения битумов из парафинистых нефтей с использованием вакуумной перегонки и нагрева до температуры крекинга [107—109]. При одинаковом фракционном составе наименьшей термической стабильностью отличаются парафиновые углеводороды, а наибольшей— голоядерные ароматические. Таким образом, можно рассчитывать, что уже легкий крекинг позволит расщепить и затем отогнать парафиновые углеводороды, отрицательно влияющие на свойства битумов. [c.81]

    Таким образом, при равном выходе на нефть и одинаковых выходах кокса сырье коксования, полученное по схеме переокисление—разбавление—перегонка , содержит больше ароматических углеводородов, чем сырье, полученное по другим рассмотренным выше схемам. Это благоприятно сказывается на термической стабильности сырья, которую оценивали на трубчатой нагревательной печи опытной установки. Через трубчатую печь в течение нескольких часов прокачивали испытуемый продукт и регистрировали давление на линии нагнетания насоса. Повышение давления свидетельствует о начавшемся закоксо-вывании печи, т. е. разложении продукта [177]. Испытанию подвергали сырье коксования, полученное по разным схемам из котур-тепинской нефти нагрев проводили до 490 °С. При нагревании мазута, окисленного до температуры размягчения около 70 °С и обеспечивающего выход кокса при коксовании 207о, давление на линии нагнетания печного насоса поднялось в течение 4 ч с 0,4 до 1,0 МПа. При нагревании остатка перегонки смеси окисленного и неокисленного мазутов, обеспечивающего даже несколько больший выход кокса (25—26%), давление за такой же период времени не изменилось. Окисленный гудрон при нагревании ведет себя подобно окисленному мазуту. Для сравнения нагревали также гудрон изменения давления на линии нагнетания насоса не наблюдалось. [c.120]

    Избирательность. Широкое применение каталитических процессов требует подбора катализаторов, избирательно ускоряющих процесс превращения сырья в желательном направлении. Например, крекинг углеводородов сопровождается реакциями дегидрогенизации, изомеризации, полимеризации, циклизации и др. Подбором катализатора и технологических параметров осуществляют процесс в нужном направлении с преимущественным выходом желаемых продуктов. Принцип избирательности используют при выборе алюмосиликатных катализаторов различного строения и структуры, учитывая при этом относительное значение выходов и качеств целевых продуктов. Например, для превращения низкокипящего термически стабильного сырья прил1еняют высокоактивные синтетические катализаторы раз- чожение же тяжелых смолистых дистиллятов осуществляют на менее активных катализаторах. Некоторые природные катализаторы [c.15]

    Среди парафиновых углеводородов наибольшей термической стабильностью обладает метан. В результате нагревания без ката-лизат(фов следы распада метана появляются лишь прп 500 °С только при температурах выше 700° С начинается заметное раз-ложеиие метана по уравнению  [c.411]

    Этилен наиболее устойчив из олефинов. Он постоянно встречается в продуктах пиролиза других углеводородов как первичный и как вторичный продукт их превращений. По термической стабильности он занимает проме/куточное место между метаном и этаном заметно разрушаться он начинает только при температурах около 660 С. При 400—700 С этилен заметно нолимери-зуется в бутилены  [c.414]

    Нефтяные смеси термически нестойкие. Среди входящих в их состав компонентов менее стойки к нагреву сернистые и асфаль-тосмолистые соединения. Парафиновые углеводороды термически менее стойки, чем нафтеновые. Последние при нагреве легче разлагаются, чем ароматические. Термическая стабильность нефтяных смесей зависит в основном от температуры нагрева и времени ее воздействия. Порог термической стабильности для непрерывной перегонки выше, чем для периодической. На практике нефть и полученпые из нее продукты (мазут, масляные фракции) можно без заметного разложения нагревать до следующих температур, °С  [c.68]

    Кроме гетероорганических примесей на термическую стабильность топлпв может вллять л состав их углеводородной части. Парафино-нафтеновые фракции реактивных топлив при нагреве осадков не образуют. Смеси нара-фино-нафтеновых углеводородов с обессеренными ароматическими фрак- [c.113]

    Молекулы метапласта не являются термически стабильными и сами вовлекаются в реакции крекинга с образованием газа и смол и конденсацией в молекулы с высоким молекулярным весом типа конденсированных ароматических углеводородов. Последние из-за своей термической стабильности и недостатка водорода не могут больше быть поставщиками летучих смоляных веществ. Эти большие молекулы могут только еще далее конденсироваться, давая низкотемпературный кокс и газ. [c.93]

    При одинаковом фракционном составе очистка от серы продуктов вторичного происхождения (коксования, каталитического крекинга) происходит значительно труднее. Связано это с тем, что подвергшиеся крекингу продукты содержат гетероатомы в структуре наиболее термически стабильных, трудно гидрирующихся соединений. Кроме того, продукты вторичного происхождения содержат много ароматических и непредельных углеводородов, обладающих высокой адсорбируемостью на катализаторе и тормозящих в результате гидрирование гетероорганичеоких соединений. [c.272]

    Гидроочищенные реактивные топлива содержат чрезвычайно мало меркаптановой серы и других типов сернистых соединений, а также смол и нестабильных к окислению углеводородов, что способствует термической стабильности топлив. Гидроочищенное реактивное топливо широко используется в авиации [52—54]. [c.201]


Смотреть страницы где упоминается термин Углеводороды термическая стабильность: [c.86]    [c.10]    [c.5]    [c.515]    [c.124]    [c.34]    [c.67]    [c.118]    [c.132]    [c.42]    [c.113]    [c.404]    [c.170]   
Современные и перспективные углеводородные реактивные и дизельные топлива (1968) -- [ c.234 ]




ПОИСК





Смотрите так же термины и статьи:

Термическая стабильность, окисляемость углеводородов, их смесей и масел



© 2025 chem21.info Реклама на сайте