Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метилэтилкетон применение

    Герметизирующие пасты готовят смешением каучука с ингредиентами на вальцах с последующим растворением резиновой смеси. Растворителем обычно служит метилэтилкетон. Применение растворителя для получения герметизирующей пасты обусловливает специфические технологические свойства этих герметиков. Они применяются для поверхностной герметизации конструкций, [c.47]


    Азеотропная ректификация отличается применением третьего компонента повышенной летучести, способного к образованию с одним из компонентов исходной смеси второго азеотропа с более низкой температурой кипения, чем исходный. Для рассматриваемого ниже примера промышленного извлечения толуола в качестве разделяющего агента принят водный раствор метилэтилкетона (МЭК). На такой установке чистота выделенного толуола достигает 99% и более. На других установках для тех же целей служит метанол. Технологическая схема процесса ректификации представлена на рис. 202. Для полного отделения толуола от неароматических углеводородов в колонну необходимо подавать в 2,8—3 раза больше МЭК, чем содержится неароматических углеводородов в исходной смеси. Содержание воды в МЭК не превышает 10%. Основная его масса отводится с головным продуктом колонны 1 и экстрагируется водой в колонне 2. Из водного раствора МЭК легко извлекается обычной ректификацией. Получаемый сверху регенерационной колонны 3 МЭК содержит около 10% воды и является разделяющим [c.327]

    Для примера рассмотрим использование описанного метода с целью выявления возможности применения воды в качестве разделяющего агента для системы этанол—метилэтилкетон. Эквимолекулярные смеси воды с этанолом и метилэтилкетоном имеют, соответственно, температуры кипения 80 и 73,5°. Значительно более высокая температура кипения смеси воды с этанолом, чем с метилэтилкетоном, показывает, что последний в смеси с водой имеет большие положительные отклонения от идеального поведения, чем этанол. Следовательно, в присутствии воды должна возрастать относительная летучесть метилэтилке-тона. Имеющиеся в литературе [33] указания о применении воды [c.48]

    Применение высших кетонов может иметь особое значение в процессах обезмасливания тугоплавких твердых и микрокристаллических парафинов с температурами плавления выше 80 °G. Температура фильтрации в этих процессах 20—30°С и выше. Использование ацетона и Метилэтилкетона в таких условиях затруднено вследствие высокого давления их насыщенных паров, препятствующего созданию требуемого вакуума в процессе вакуумной фильтрации. [c.115]

    Исследована целесообразность применения для депарафинизации и обезмасливания высших кетонов в США действуют установки фракционирования парафина метилизобутилкетоном и депарафинизации масел смесью метилэтилкетона и метилизобутилкетона. [c.140]


    В описанном процессе можно использовать и другие растворители, например метилэтилкетон. метилизобутилкетон и т. д. В этом случае гранулы не всплывают в отстойниках, а оседают на дно. При применении смеси кетона и бензола, плотность которой близка к плотности гранул, отстой их от жидкой фазы затруднен. Предложено [154, 155] после экстракции гранул гача смесью ацетона и бензола твердую фазу отделять от жидкой фильтрацией под вакуумом. Благодаря сферической форме частиц распыленного гача скорость фильтрации его выше, чем гача, охлажденного в скребковых кристаллизаторах. [c.169]

    Пиролиз ацетона в кетен, открытый еще в 1907 г., многие годы представлял лишь академический интерес, тем более что и выход продукта не превышал 1С—20%. Однако применением повторного пропуска при малой конверсии за проход удалось поднять выход до 70—80%. Давно известная реакция кетена с уксусной кислотой, приводящая к образованию уксусного ангидрида, стала одним из важнейших путей промышленного получения этого продукта и снизила цены на него до весьма низкого уровня. Кетен, ацетон и получаемый через вторичный бутиловый спирт метилэтилкетон нашли и иные виды применения в качестве сырья для разнообразных синтезов. Кетен в растворе ацетона легко полимеризуется в дикетен, который, реагируя со спиртом, дает ацетоуксусный эфир, а с анилином — ацетоацетанилид. Спирты более чем с пятью атомами углерода получаются реакцией конденсации простейших альдегидов и жетонов (ацетальдегида, масляного альдегида, ацетона). Таки.ч [c.456]

    Такой же эффект дает и применение кислородсодержащих активаторов — метилэтилкетона, ацетальдегида, паральдегида. Предпочтительны последние, полностью превращающиеся в процессе сопряженного окисления в уксусную кислоту, которая таким образом становится побочным продуктом. Окисление в этом случае ведут воздухом (в случае метилэтилкетона — кислородом). Ниже сопоставляются варианты окисления -ксилола в терефталевую кислоту на различных катализаторах [77, с. 404]  [c.78]

    Третий компонент, образующий азеотропные смеси только с одним из компонентов разделяемой смеси, называется селективным неселективный растворитель образует азеотропные смеси с обоими компонентами разделяемой смеси, характеризующиеся различными температурами кипения. Так, при азеотропном разделении метилциклогексана и толуола метилэтилкетон является селективным компонентом, а метанол — неселективным [19, 20]. Применение неселективного третьего компонента требует, как правило, большей погоноразделительной способности колонны и тщательного контроля количества добавляемого компонента. [c.41]

    При увеличении содержания ароматического растворителя в смеси с жетоном увеличиваются продолжительность фильтрования, ТЭД и выход депарафинированного масла, но повышается его температура застывания (табл. 5). При одном и том же выходе депарафинированного масла, например 68% (масс.), продолжительность фильтрования, ТЭД и температура застывания масла ниже в случае применения МЭК в смеси с толуолом при этом добавка толуола к МЭК меньше, чем к ацетону. Метилэтилкетон по сравнению с ацетоном обладает лучшей растворяющей способностью [c.170]

    В промышленности наиболее широкое применение нашли процессы депарафинизации в растворе низкомолекулярных кетонов (метилэтилкетона или ацетона) в смеси с бензолом и толуолом, а в последнее время — только с толуолом. На ряде зарубежных заводов используется метилизобутилкетон. Характеристика растворителей приведена ниже  [c.176]

    Обычно в качестве вещества, образующего азеотропную смесь с ароматическим углеводородом, берут метилэтилкетон или метиловый спирт. Лэйк [9] составил список веществ, дающих азеотропные смеси с толуолом. Для азеотропной перегонки последнего, по-видимому, наиболее часто используют водный метилэтилкетон. Его применение для этой цели в промышленном масштабе описано в литературе [9, 10]. Этот кетон увлекает с собой в отгон парафины, а также нафтены, если последние присутствуют в разделяемой смеси. Для экономии греющего пара перегонке подвергают концентрат, содержащий 40% толуола. Даже в этом случае для хорошего разделения требуется брать на каждый объем неароматического углеводорода 2—3 объема метилэтилкетона. [c.246]

    Метилэтилкетон кипит при 80°. Он вступает в большинство реакций ацетона, но не имеет пока широкого применения как сырье для органических синтезов. [c.329]

    Среди ненасыщенных С4-углеводородов наиболее важную роль в химической промышленности играет дивинил. Ограниченное количество этого диолефина присутствует в -фракции, получаемой при производстве этилена пиролизом жидких углеводородов. Вследствие высокой концентрации дивинила в этой фракции выделение его обходится дешево. Эта фракция и была первым источником дивинила, на который США ориентировались в 1941—1942 гг. Эту же фракцию используют и в Англии при современных полупроизводственных испытаниях. В том случае, когда дивинила требуется больше, чем его имеется в качестве побочного продукта производства этилена, этот диолефин производят дегидрированием н-бутиленов. Одностадийный процесс получения дивинила из н-бутана по существу не отличается от метода, в котором исходят из бутиленов. Его можно использовать в тех случаях, когда вследствие относительной доступности бутана последний будет более дешевым исходным веществом. В других методах производства дивинила сырьем служит ацетилен или этиловый спирт. Первый из этих методов использовали в Германии вплоть до 1945 г., по второму методу в США во время второй мировой войны получали подавляющую часть дивинила, необходимого для производства синтетического каучука. Считается, что в нормальных условиях наиболее экономичным является производство дивинила из н-бутиленов. Из других применений н-бутиленов в химической промышленности следует указать на производство растворителей втор-бутилового спирта и метилэтилкетона. Изобутилен применяют для получения бутил-каучука, полиизобутиленов, диизобутилена и полупродуктов в производстве искусственных моющих средств. [c.405]


    Поливинил бромид растворим в метилэтилкетоне, диоксане, пиридине, нитробензоле и набухает в толуоле, бензоле, ацетоне. Полимер отличается низкой химической стойкостью и потому не находит практического применения. Отщепление бромистого водорода наблюдается и при хранении полимера. С повышением [c.275]

    По литературным данным, метилэтилкетон с водой обладает частотной взаимной растворимостью [141. Так, при Т = 20° С растворимость МЭК в воде составляет 22,6%. Однако, как показала экспериментальная проверка, растворимость МЭК даже в слабом растворе кислот становится полной. Таким образол, применение чистого МЭК для экстракции низкомолекулярных кислот не представляется возможным. В целях уменьшения растворимости МЭК в кислой воде применяется дополнительное введение в раствор некоторого количества бензола. [c.88]

    Химическая промышленность выпускает чрезвычайно широкий ассортимент альдегидов, кетонов и органических кислот. Наибольшее применение нашли формальдегид, ацетальдегид, бутираль-дегид, акролеин, ацетон, циклогексанон, метилэтилкетон, уксусная и высшие жирные кислоты. [c.168]

    Кристаллический полистирол не растворим в общераспространенных растворителях при обычной температуре, но полностью растворяется в кипящем бензоле, толуоле, ксилоле, метилэтилкетоне. Растворы стабильны при комнатной телшературе. Плотность кристаллического полистирола 1,08 г/см . Свойства кристаллического полистирола мало изменяются до 200°, при 220° происходят плавление кристаллов и переход полимера в вязкотекучее состояние. Хрупкость кристаллического стирола выше хрупкости аморфного, но ее можно несколько снизить ориентацией образца или введением пластификаторов [111]. Введение пластификатора в аморфный или кристаллический полистирол резко снижает температуры их стеклования и плавления, уменьшая температурный интервал применения полистирола. [c.806]

    Пероксиды применяют для повышения адгезии при получении комбинированных материалов типа полиэтилена на алюминии или железе. В сочетании с ЗОз в качестве окислителя, переводящего ЗОз в 50з, гидропероксиды и пероксид метилэтилкетона используют при изготовлении песчаных литейных форм с применением в качестве связующих фурановых и эпоксидных смол [90]. [c.26]

    Из анализа вышеприведенных требований к качеству экстра — 1ентов можно констатировать, что практически невозможно реко — иендовать универсальный растворитель для всех видов сырья и для нсех экстракционных процессов. В этой связи приходится довольствоваться узким ассортиментом растворителей для отдельных экстракционных процессов. Так, в процессах деасфальтизации гудро — нов широко применялись и применяются низкомолекулярные ал — каны, такие, как этан, пропан, бутан, пентан и легкий бензин, являющиеся слабыми растворителями, плохо растворяющими смолисто—асфальтеновые соединения нефтяных остатков. В процессах селективной очистки масляных дистиллятов и деасфальтизатов применялись сернистый ангидрид, анилин, нитробензол, хлорекс, фенол, фурфурол, крезол и N — метилпирролидон. В процессах депарафинизации кристаллизацией наибольшее применение нашли ацетон, бензол, толуол, метилэтилкетон, метилизобутилкетон, дихлорэтан, метиленхлорид. [c.212]

    Для процессов депарафинизации масел и обезмасливания гачен и нетролатумов экстрактивной кристаллизацией предложены и испытаны сотни полярных и Е1егюлярных растворителей и их смеси. Однако только некоторые из иих нашли применение в промышленных условиях. Наибольшее распространение в современных производствах масел получили кетон—ароматические углеводороды смеси метилэтилкетона (МЭК) или ацетона с толуолом (см. табл. 6.1). За рубежом все более широкое распространение получает смесь МЭК с метилизобутилкетоном. [c.249]

    В качестве других примеров применения третьего компонента для разделения систем близкокипящих компонентов можно указать на использование бутилового ацетата для обезвоживания уксусной кислоты или использование метилового алкоголя или метилэтилкетона при извлечении ароматического углеводорода из смеси с близкокипящими углеводородами других кл1ассов. [c.139]

    Вопросу подбора для разных условий карбамидной депарафинизации растворителей-активаторов и установлению величины их оптимальной добавки посвящено большое количество исследований как советских, так и зарубежных авторов [40—46, 37—39, 31, 29]. В перечисленных работах можно найти дальнейшие по- дробности по выбору активаторов. В работе А. М. Кулиева с сотрудниками [38] указывается, в частности, что потребное количество активатора зависит от его природы (табл. 18). Так, при депарафинизации дистиллятов сураханской нефти в растворе углеводородного растворителя оптимальное количество вводимого активатора составляет метилового спирта — 2%, этилового спирта — 4%, изопропилового спирта — 25% и ацетона или метилэтилкетона — 50%. При применении в качестве активатора изопропилового спирта важное значение имеет содержание в нем воды, которое должно составлять 8—9% [38]. Роль воды в этом активаторе заключается, по мнению авторов, в повышении растворимости в нем карбамида, который в безводном изопропиловом спирте, особенно в присутствии углеводородного растворителя, растворяется недостаточно. [c.145]

    В одной Ftpynne способов применяют промоторы окисления (ацетальдегид, метилэтилкетон, паральдегид) и ацетат кобальта в качестве катализатора. Промоторы окисляются вместе с ароматическим углеводородом, образуя уксусную кислоту. Их роль скорее всего состоит в поддержании кобальта в активном трехвалентном состоянии за счет окисления двухвалентной формы промежуточно образующимися надкислотами. Более широкое применение нашел [c.401]

    Эти л л<е путем можно из гомологов этилена вырабатывать кетоны (ацетон, метилэтилкетон), но их синтез не нашел большого применения из-за наличия других экономичных способов получения (например, получение ацетона при кумольном способе производст-иа фенола) и пониженного выхода кетонов (85—90%) с одновременным образованием малоценных хлоркетонов. [c.449]

    Растворители, применяемые для депарафтизадии. Для депарафинизации дизельных фракций используют смесь полярных растворителей (ацетон, метилэтилкетон и др.) с неполярными (бензол, толуол). Применение смеси обусловлено тем. что полярные растворители при температуре депарафинизации не растворяют твердые углеводороды, а избирательно растворяют масляные углеводороды. обеспечения растворимости н-алканов в полярных растворителях к ацетону добавляют смесь бензола и толуола или только толуол. Требуемая глубина депарафинизации дизельных топлив из разных нефтей достигается различное степенью охлаждения депарафинируемой смеси. [c.164]

    Процессы обезмасливания кристаллизацией с применением в качестве растворителя смеси кетона с толуолом или бензодом. Эти процессы являются наиболее распространенными и универсальными. Они используются для переработки очищенных и неочищенных дистиллятных и очищенных остаточных продуктов [2, 25, 37—39]. В растворитель обычно вводят метилэтилкетон или ацетон. [c.116]

    Модификацией данного способа является окисление п-ксилола до терефталевой кислоты без применения агрессивных бромсодержащих добавок с использованием кобальтового катализатора и активатора — ацетальдегида, паральдегида (СбНггОз), метилэтилкетона. Выход терефталевой кислоты достигает 97—98%. [c.288]

    Депарафинизация широкой фракции юймынской нефти (120— 470° С) осуществлена И. Л. Гуревичем с сотр. [59] с применением различных активаторов при следующих стандартных условиях расход карбамида — 100 вес. %, бензола для разбавления сырья — 50 объемн. %, бензола для промывки комплекса — ЮОобъемн. %, активатора — 10 вес. %. Приведенные в табл. 7 данные исследования показывают, что наилучшие результаты по депарафинизации получены в присутствии метанЪла, этанола и ацетона худшие — при использовании в качестве активаторов изопропанола и изобутанола. В присутствии метилэтилкетона, дихлорэтана и воды комплексообразование не шло. В связи с этим была установлена взаимосвязь между влиянием активаторов на комнлексо- [c.34]

    В качестве промывного агента предложено применять целый ряд соединений. Л. М. Розенберг с сотр. [25] рекомендует применять для промывки комплекса при количественном выделении и-парафинов изооктан, и-пентап либо их смесь. Предложены также изооктановая фракция [151], метилэтилкетон [53], депарафини-роваппая фракция 90—120° С [59] и другие бецзиновые фракции [46]. Рекомендовано также [148, 152] промывать комплекс насыщенным раствором карбамида, что позволяет достичь удовлетворительного удаления окклюдированных частиц и добиться значительного снижения температуры застывания депарафинируемого продукта. Предложено также [153] промывать комплекс жидким продуктом с высоким содержанием нормальных алифатических углеводородов, полученным от предыдущих циклов разрушения комплекса. В. В. Усачев и П. П. Дмитриев с сотр. [81] установили, что при разрушении комплекса, полученного из и-парафинов дизельного топлива, водой и насыщенным этанольным раствором карбамида при 80° С применение в качестве промывного агента бензола, серного эфира и легкого бензина с к. к. = 120° С (при промывке в интервале температур от +10 до —20° С) дает весьма близкие результаты, однако наиболее высокоплавкие -парафины получены при разрушении водо11 комплекса, предварительно промытого легким бензином при —20° С (табл. 20). [c.85]

    Рощин В.Н., Переверзев А.Н, Применение- метилэтилкетона при обезмасливании парафинов. //. Нефтепереработка и нефтехимия,- 1876.-1.- с. 18-19. [c.49]

    Промышленность выпускает ряд других кетонов метилэтилкетон и этилалилкетон, ацетофенон и т. д. Они находят применение в качестве селективных растворителей при очистке минеральных масел и для приготовления низковязких лаков с хорошей текучестью. [c.172]

    Метилэтилкетон (МЭК) СПзСОСНаСНз — приятно пахнущая жидкость ( ип = 79,6°, д4° = 0,805) Он менее летуч, чем ацетон (давление пара при 20° 71,2 мм рт. ст.), поэтому в ряде случаев применение его выгоднее, чем ацетона. Огнеопасность также меньше, чем у ацетона, а именно вспышки в открытом сосуде около -Ы°. [c.322]

    Необходимо отметить, что применение хиральных четвертичных аммониевых солей при реакции карбонильных соединений с -толилхлорметилсульфоном приводит к оптически активным оксиранам (максимальный оптический выход 2,5%). Для достижения оптической индукции важно присутствие гидроксигруппы в Р-положении ониевой соли. Индукция повышается также при связывании катализатора на полимерной матрице. При использовании полимерносвязанного катализатора удается достичь оптических выходов порядка 23%. Такой выход был получен при реакции метилэтилкетона с га-толилхлорметилсуль-фоном в присутствии [c.130]


Смотреть страницы где упоминается термин Метилэтилкетон применение: [c.256]    [c.126]    [c.216]    [c.129]    [c.160]    [c.113]    [c.114]    [c.313]    [c.59]    [c.41]    [c.215]    [c.278]    [c.654]    [c.395]    [c.288]    [c.138]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.288 , c.451 ]




ПОИСК





Смотрите так же термины и статьи:

Метилэтилкетон



© 2025 chem21.info Реклама на сайте