Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты масс-спектрометрия

    Мы не сказали о том, что аминокислоты и небольшие пептиды можно изучать с помощью масс-спектрометрии, если их предварительно превратить в летучие производные. [c.529]

    В табл. 19.1 не включены некоторые типы устройств, которые удовлетворяют приведенному выше определению автоматической системы для химического анализа в жидкой фазе. Опущены в ней и такие приборы, как сборники фракций, нагревательные бани и т. п. эти приборы широко известны и применяются во многих лабораториях. Метод ГХ обсуждается в других главах этой книги, поэтому из соответствующего оборудования в табл. 19.1 включены лишь автоматические устройства для ввода проб в газовый хроматограф. Недавно вышли обзоры [41, 42] литературы по комбинированному применению ГХ и масс-спектрометрии по этой причине в табл. 19.1 нет сведений о соответствующих устройствах. В других источниках читатель может найти и информацию об автоматическом анализе аминокислот [43—451 [c.380]


    В результате образуется фенилтиогидантоин, содержащий боковой радикал аминокислоты Ri, который может быть идентифицирован путем измерения какой-либо физической или физико-химической характеристики, позволяющей различать гидантоины, соответствующие разным входящим в состав белков аминокислотам. В качестве такой характеристики может служить хроматографическая подвижность в какой-либо предварительно проградуированной по стандартным образцам гидантоинов системе или молекулярная масса, определяемая с помощью масс-спектрометра. [c.271]

    Последовательность аминокислот в коротких линейных пептидах (и особенно в циклопептидах) успешно определяют с помощью масс-спектрометрии. [c.509]

    Важнейшим этапом в выяснении структуры полипептидов и белков является определение последовательности аминокислот. Не считая применения масс-спектрометрии для решения этой проблемы [14] (см. кн. I гл. 5), основным методом определения последовательности аминокислот является анализ концевых групп он состоит в определении аминных и карбоксильных концевых групп. Для решения этой задачи были разработаны различные химические и ферментативные методы. [c.402]

    Опубликованы данные о масс-спектрометрии N-ТФА-бутило-вых эфиров [154]. Уникальные пути фрагментации индивидуальных аминокислот позволяют с уверенностью идентифицировать плохо разрешенные пики. Эта работа продемонстрировала ценность масс-спектрометра как очень чувствительного (хотя и дорогого) идентифицирующего детектора. [c.136]

    Регулируемая селективность масс-спектрометра как хроматографического детектора означает следующее параллельно с хроматограммой анализируемого образца по полному ионному току могут быть записаны одна или несколько хроматограмм по заранее выбранным значениям miz (так. называемые масс-фрагменто-граммы) . Следует подчеркнуть, что предел обнаружения в этом методе примерно в 100 раз меньше, чем по полному ионному току, что обусловлено снижением уровня шумов. Такой прием дает возможность даже в сложных смесях легко обнаруживать присутствие веществ, дающих в масс-спектрах сигналы с характеристичными массовыми числами, и широко применяется при анализе следов галогенсодержащих соединений в воздухе (на фоне относительно большого количества углеводородов), аминокислот в виде их летучих производных, метаболитов лекарственных препаратов и т. д. Для повышения чувствительности масс-фрагментограммы, как правило, записывают по массовым числам максимальных сигналов в спектрах анализируемых веществ. [c.201]


    Как MALDI, так и ионизацию электрораспылением можно легко сочетать с ферментативным расщеплением белков для последующего определения их параметров. После расщепления белка полученная смесь целиком помещается в MALDI-спектрометр и анализируется. В наиболее благоприятных случаях можно определить массу более чем 90% пептидных фрагментов. Этот подход можно использовать для определения изменений в белке, например при определении параметров рекомбинантных белков или для идентификации ковалентно-связанных модификаторов белка. Масс-спектрометрия с ионизацией электрораспылением, вследствие того, что она легко сочетается как с ЖХ-МС, так и тандемной масс-спектрометрией, может быть источником еще и дополнительной информации о последовательности аминокислот в белке. При химической ионизации пептид фрагментируется на два комплементарных ряда ионов, которые имеют последовательности аминокислот, начиная с С- и N-терминальных атомов пептида. Тандемная масс-спектрометрия с ионизацией электрораспылением оказывается более экспрессной и находит более разнообразное применение, чем традиционные биохимические методы, такие, как последовательное отщепление аминокислот по методу Эдмана. [c.308]

    Особо чувствительным методом определении фенил- и метилтиогидан-тоинов аминокислот является масс-спектрометрия [104 — 106]. В качестве окрашенного реагента для деградации предложен 4 -N,N-димeтилaминo-азобензол-4-изотиоцианат [107]. [c.370]

    Метод масс-спектрометрии особенно удобен при выяснении структуры пептидных антибиотиков, присутствие в которых непротеиногенных аминокислот и D-энантиомеров исключает использование ферментативного расщепления. [c.374]

    Пептиды недостаточно летучи, чтобы их можно было изучать епосредственно с помощью масс-спектрометрии электронного удара. Первые попытки применения масс-спектрометрии для определения последовательности включали предварительное ацилирование аминогрупп и этерификацию карбоксильных групп. Масс-спектры таких производных показали, что расщепление происходит с обеих сторон карбонильных групп. Расщепление связи С—N приводит к ионам ацилия —ЫНСНДС=0+, в то время как расщепление связи С—С дает альдиминиевые ионы —+NH= HR. Это основная тенденция кроме того, происходит дополнительная фрагментация боковых групп некоторых аминокислот, включая валин, лейцин, аспарагин, серин, треонин и цистеин. [c.278]

    Метод масс-спектрометрии позволяет решать весьма сложные структурные задачи органической химии, например, такие, как определение последовательности расположения аминокислот в полипептидах, установление строения производных моносахаридов, дисахаридов и олигосахаров. В масс-спектрах производных углеводородов, содержащих атомы Вг (79 и 81), хлора (35 и 37), серы (32 и 34), следует учитывать наличие изотопноразличимых положительно заряженных фрагментов. Частицам, имеющим идентичное строение, но содержащим изотопные атомы, соответствуют близлежащие пики определенной интенсивности. Во многих случаях соотношения пиков изотопов того или иного атома в молекуле помогают легче решить вопрос о ее строении. Представления о структуре получают, анализируя пути фрагментации, т. е. изучая число, интенсивность пиков и природу их возникновения. В табл. 4.1 приведены данные о типичных осколках различных классов соединений и их массовых числах. [c.104]

    Получающиеся в результате этих реакций полиамины имели при разделении в газовом хроматографе заметно меньшие удерживаемые объемы и давали более острые пики. С помощью масс-спектрометрии все изучаемые пептиды можно было идентифицировать в виде как полиаминоспиртов, так и полиаминов. Определенные аминокислоты в ходе двукратного восстановления теряют некоторые структурные особенности, а образующиеся из них продукты дают при масс-спектрометрии пики с одинаковым числом единиц массы и, следовательно, становятся неразличимыми. К ним относятся Ала и Сер, Вал и Глу, Про и Опр, а также а-аминомасляная кислота, Тре и Асп. В таких случаях их можно различить на масс-спектре, если восстановление вести в присутствии LiAlDi, когда восстанавливаемые группы метятся одним или несколькими атомами дейтерия [7]. Проиллюстрируем это на примере трех последних аминокислот при двукратном восстановлении боковая цепь а -аминомасляной кислоты (/) остается неизменной, в Тре (//) включается один атом дейтерия и в Асп IIГ)—три  [c.340]

    В заключение следует еще упомянуть применявшуюся Гейнсом и Грютц-махером [12а] комбинацию хроматографии в тонких слоях и масс-спектрометрии. При этом соскобленные с хроматограммы пробы конденсированных ароматических и гетероциклических соединений стероидов и производных сахаров и аминокислот в маленьких стеклянных капиллярах непосредственно вводили в масс-спектрометр. В применяемом интервале температур 150— 200° эти соединения возгоняются прямо в электронном пучке. [c.65]

    Масс-спектрометр нашел применение в химии аминокислот и пептидов [73], диагностике работы легких [363], исследованиях липидов [433], измерениях давления газа в крови [468]. Исследовались неконденсируемые продукты фотохимического разложения ацетона в водном растворе аллилового спирта при 2537 A [496]. Ропп, Мелтон и Рудольф [422] изучали фотохимические реакции между муравьиной кислотой и хлором. Масс-спектрометр использовался в качестве детектора для газовой хроматографии [318], а также для определения ряда аминокислот [56]. Трент и Миллер [485] анализировали алифатические кислоты высокого молекулярного веса, а также их метиловые эфиры. Злотовский и Винкель [529] исследовали химические процессы, [c.655]


    Аминокислоты и пептиды. Метод масс-спектрометрии можно с успехом применять для установления структуры аминокислот и пептидов. На первый взгляд это кажется удивительным, так как хорошо известно, что такие соединения нелетучи однако после превращения их в этиловые эфиры (сложные) и нолиимипоспирты (эти реакции можно легко провести в микромасштабе) получаются достаточно летучие соединения [11, 15]. [c.343]

    Говоря о применении малолинейчатой масс-спектрометрии в качественном анализе, нельзя не упомянуть о фотоионизации, позволяющей в весьма мягких условиях получить масс-спектр соединений в близпороговой области. Так, исследование цис- и трансизомеров 4-третбутилциклогексанона [730] при энергии фотонов 21,2 эв позволило получить весьма интересные данные, связывающее структуру конфорМеров с величиной пика Mi и (М—H2Q)i [731, 732]. Фотоионизационным методом исследовались аминокислоты, пептиды и другие сложные высокомолекулярные систему, имеющие большое значение для химии природных соединений [733]. [c.296]

    СЬЗ. S с h о е п h е i m е г R., R i 1, 1, е п Ь е г g D. и др.. Исследования протеинового метаболизма. (Включает общее рассмотрение применепия изотопов к изу-чепшо протеинового метаболизма. Нормальное относительное содержание изотонов азота в аминокислотах. Использование масс-спектрометра для определения изотопов азота в органических соединениях.), 1. Biol. hem., 127, 285-351 (1939). [c.634]

    F. В i е m ann К. Использование масс-спектрометрии в химии аминокислот и пептидов. himia, 14, 393 (1960). [c.720]

    Разработаны варианты капиллярной флюидной хроматографии, флюидной хромато-масс-спектрометрии, флюидной хроматографии с программированием давления и потока, а также препаративной флюидной хроматографии. Используют пламенно-ионизационный, термоионный, пламенно-фотометрический, рефрактометрический, инфракрасный и ультрафиолетовый детекторы. Объектами исследования служили нефтяные остатки, олигомеры и полимеры, полиароматические углеводороды и их нитропроизводные, полиглицериды, полисахариды, красители, оптические изомеры производных аминокислот, металлоорганические соединения и т. д. [27—29]. [c.77]

    Резкая интенсификация научной деятельности за последние десятилетия вынуждает исследователя отказаться от чтения множества узкоспециальных публикаций и большую часть информации получать из заслуживающих доверия обзоров. Эта ситуация наблюдается и в области анализа аминокислот, пептидов и белков, где каждые пять лет появляются новые эффективные методы, способные заменить уже существующие. Например, в настоящее время газожидкостная хроматография успешно конкурирует с автоматической ионообменной хроматографией аминокислот по Муру и Стейну, которая полностью заменила микробиологический анализ, хроматографию на бумаге и другие методы количественного анализа, существовавшие до 1958 г. Определение последовательности пептидов — трудоемкая задача при использовании обычных методов — производится на данном этапе автоматически на секвенсере Эдмана, а последовательность небольших пептидов удобно определять с помощью масс-спектрометрии. [c.6]

    По нескольким причинам для защиты аминогруппы в ГЖХ использовалась, за редким исключением, трифторацетильная группа. Трифторацетильные производные эфиров аминокислот и пептидов очень устойчивы при высоких температурах, а трифторацетильная группа придает ббльшую летучесть, чем любая другая замещенная ацетильная группа [12]. Только гептафтор-бутирильные производные имеют более высокую летучесть [13], но они не нашли пока широкого применения, хотя в сочетании с масс-спектрометрией [77] и кажутся привлекательными из-за того, что соответствующие производные эфиров пептидов можно разделять при меньших температурах колонки и меньшей утечке колонки. [c.147]

    В настоящее время наибольшее значение в анализе последовательности аминокислот приобрела комбинация методов газовой хроматографии и масс-спектрометрии (ГЖХ/МС) главным образом это произошло благодаря достижениям масс-спектрометрии пептидов. Метод ГЖХ/МС исключительно успешно применялся для выяснения структуры нескольких природных пептидов. Некоторые результаты будут обсуждаться на следующих страницах, дополняя таким обрзом гл. 4. [c.168]

    Тем не менее некоторые идентифицированные пептидные фраг-манты — Phe-Val-Phe, Phe-Phe-Ala, Phe-Val-Ala и Phe-Phe-Phe — не соответствовали этой структуре. Происхождение таких вводя-ших В заблуждение пептидных фрагментов объяснялось на основе предположения о том, что при кислотном гидролизе циклопептида в метаноле образуется циклический пептид с меньшим размером цикла, а остальная часть молекулы затем элиминируется. Реакция вызывается трансаннулярными взаимодействиями и приводит к образованию новой пептидной связи, отсутствовавшей в исходном пептиде. Если затрагиваются только две аминокислоты и элиминируется меньшая часть цикла, то может образоваться дикетопиперазин. Сочетание методов ГЖХ и масс-спектрометрии с жидкостной хроматографией использовали Байер и Кениг [18] в исследовании последовательностей пептидного синтеза, проведенного по методу Меррифилда [31]. [c.171]

    Принципы техники масс-спекрометрии и поведение ионизованных органических молекул под действием электронного удара детально обсуждались многими исследователями [1]. Типы фрагментации в условиях масс-спектрометрии индивидуальных свободных аминокислот [2,3], алифатических эфиров аминокислот [4], Ы-ацетиламинокислот [5] и их алифатических эфиров [6] подробно описаны в ряде обзорных статей [7]. Ввиду общего значения проблемы определения аминокислотной последовательности в пептидах и белках ниже будут рассмотрены принципы применения масс-спектрометрии в области пептидных производных. Следует отметить несколько последних обзоров [7] по этой быстро развивающейся области (см. также разд. 4.8). [c.189]

    Детальное изучение результатов количественного определения аминокислот в общем гидролизате фортуитина показало, однако, что предложенная формула не соответствует данным о количестве азота в молекуле. Масс-спектрометрия позволила идентифицировать эту неизвестную составляющую как остаток N-метиллейцина и позволила однозначно определить его место в нонапептидной цепи. [c.200]

    Местер и сотр. [66] исследовали некоторые синтетические N - ациламиноацил - 2-дезокси-2-ацетамидо-3,4,6-три-0-ацетил-р-D-глюкозамины и покрали, что наличие связи между аминокислотой и гексозамином в гликопептидах может быть обнаружено масс-спектрометрией подходящих производных. [c.208]

    Можно предвидеть значительное улучшение химических и биохимических методов определения последовательностей оснований в нуклеиновых кислотах и аминокислотных последовательностей в белках. Сейчас газофазный секвенатор, работающий в автоматическом режиме, позволяет надежно определять до 60 последовательно расположенных аминокислот (называемых аминокислотными остатками), расположенных с аминоконца белка. Применение тандемной масс-спектрометрии или других новых методов позволяет устанавливать в автоматическом режиме полные аминокислотные последовательности белков, содержащих несколько сот аминокислотных остатков. [c.180]

    Полученные полиаминоспирты являются подходящим материалом для определения строения исходных пептидов с помощью масс-спектрометрии. Для разделения смесей таких полиамино-спиртов оказалось пригодной газовая хроматография. Однако с помощью этих методов можно определить последовательность расположения аминокислот только в пептидах с низким молекулярным весом, которые при взаимодействии с Ь А1Н4 дают летучие полиаминоспирты [341]. [c.454]

    Аминокислоты, являющиеся внутренними солями, практически не испаряются в масс-спектрометре. Для повышения летучести обычно их переводят в метиловые или этиловые эфиры. В ряде случаев осуществляют также защиту аминогруппы путем ее ацетилирования или трифторацетили-рования. Пики молекулярных ионов таких соединений всегда можно идентифицировать, но интенсивность их крайне низка—1—0,01%. При этом кроме молекулярного иона наблюдаются зачастую даже более интенсивные пики ионов (М + 1)" , образующиеся вследствие легкого протонирования молекулы, напри- мер влагой в приборе, или вследствие иономолекулярных реакций между молекулами самого вещества. Стабильность молекулярных ионов эфиров циклических амино- кислот выше стабильности ациклических соединений. Так, интенсивность пика молекулярного иона норвалина составляет всего 0,08% от максимального, тогда как у про-лина в 6 раз выше (0,52%). Присутствие в структуре аминокислоты ароматических или гетероароматических колец значительно стабилизирует молекулу, и уже у тирозина и триптофана интенсивность пиков молекулярных ионов достигает соответственно 4 и 5%. [c.147]

    Методами масс-спектрометрии и ГЖХ было исследовано поведение обогаш енных С-атомами и дейтерированных аминокислот в виде их ТМСнроизводных [76]. Установлено, что дейтеросоеди-нения имеют меньшие времена удерживания, чем протиевые соединения, причем разница увеличивается приблизительно пропорционально числу D-атомов в молекуле аминокислоты. Что касается аминокислот, содержащих атомы С и С, то их времена удерживания различались столь незначительно, что разделить их не удалось. [c.30]

    ФТГпроизводные 19 аминокислот были также разделены на смеси НЖФ (4,25% рГ-1 и 0,75% ЗЕ-ЗО), нанесенной на промытый кислотой и силанизированный хромосорб [82]. Производные аланина, пролина, валина, лейцина и изолейцина определяли при 200° С на колонке с ЗЕ-ЗО и идентифицировали методом масс-спектрометрии [83]. [c.58]


Смотреть страницы где упоминается термин Аминокислоты масс-спектрометрия: [c.180]    [c.154]    [c.693]    [c.62]    [c.65]    [c.183]    [c.279]    [c.61]    [c.747]    [c.139]    [c.102]    [c.8]    [c.308]    [c.705]    [c.271]    [c.677]    [c.288]   
Установление структуры органических соединений физическими и химическими методами том 1 (1967) -- [ c.343 , c.348 ]

Установление структуры органических соединений физическими и химическими методами Книга1 (1967) -- [ c.343 , c.348 ]




ПОИСК





Смотрите так же термины и статьи:

ДНФ-аминокислот, автоматизированная масс-спектрометрией

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия аминокислот и пептидов

Масс-спектрометрия масс-спектрометры



© 2025 chem21.info Реклама на сайте