Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Резины испытания механические

    Изложена информация о каучуках, компонентах резиновых смесей и рези 1ах. Представлены сведения по физико-механическим и эксплуатационным свойствам резин, методам их испытаний. Описаны резиновые покрытия. На примере рассмотрена разработка рецептур новых резиновых смесей. Представлены результаты армирования резин применительно к парам трения. [c.2]


    В книге рассматривается один из важнейших разделов практикума по технологии резины — физико-механические испытания резин. В ней описываются общие требования к подготовке образцов и проведению испытаний, методы определения прочностных, усталостных, деформационных и других свойств резины, а также методы определения свойств армирующих текстильных материалов и адгезии их к резинам. [c.2]

    Морозостойкость резины при механических испытаниях в принципе может быть характеризована тремя способами. Первый способ заключается в нахождении температуры механического стеклования. Второй способ заключается а сравнении механического свойства, определяемого при какой-либо одной заданной температуре, с его значением при нормальных температурных условиях. Механические свойства, изучаемые в обоих случаях, могут быть весьма различны. Обычно выбираются деформационные характеристики. Третий способ основан на определении прочностных характеристик он дает понятие о температуре хрупкости как температуре, при которой происходит переход к хрупкому разрушению. [c.442]

    Теплостойкость и морозостойкость являются одними из важных характеристик резин, как и любых полимерных материалов. Они характеризуются верхней и нижней допустимой температурой, при которых возможна длительная эксплуатация. В силу особенностей физико-механических свойств, при определенной высокой температуре полимер, как известно, переходит в вязко-текучее состояние, а при переохлаждении — в стеклообразное. Таким образом, при испытаниях на теплостойкость и морозостойкость определяют температуру перехода полимерного материала из высокоэластического состояния в вязко-текучее и стеклообразное. [c.103]

    Данная книга является первой частью лабораторного практикума по технологии резины. Она посвящена изучению особенностей поведения резин при механических деформациях, ознакомлению с основными физико-механическими методами испытаний, наиболее распространенными в заводских условиях, исследованию влияния состава резин на их свойства. Одновременно кратко рассматриваются теоретические основы курса. [c.6]

    Для иллюстрации общего комплекса свойств, получаемого при применении сложноэфирных каучуков, приведем данные по испытанию резин протекторного типа на основе БЭФ-10Э (табл. 2) [8]. Резина на основе БЭФ-10Э существенно превосходит обычные протекторные резины по напряжению при удлинении 300%, эластичности при 20°С, твердости, истираемости и особенно по сопротивлению старению и образованию трещин. Практически, старение в течение 48 ч приводило к улучшению свойств резины на основе БЭФ-10Э, главным образом сопротивления раздиру и механических показателей, при высоких температурах. [c.410]


    Сущность различных методов определения сопротивления резин старению заключается в сопоставлении физико-механических показателей вулканизата до старения с физико-механическими показателями того же вулканизата после старения. При этом одна часть образцов подвергается физико-механическим испытаниям без старения, а другая часть таких же образцов подвергается старению по одному из указанных выше методов и испытывается после старения. При пользовании методами 3 и 4 применяют образцы в виде стандартных двусторонних лопаток, предназначенных для испытания на предел прочности при растяжении, при других методах иногда применяют образцы иной формы. [c.195]

    Когда в эксплуатации применялись только прямогонные топлива, стабилизированные природными ингибиторами, испытания топлив на совместимость с резиной сводились к оценке влияния на резину углеводородного состава топлива и примесей в нем. С этой целью образцы резины (в напряженном или ненапряженном состоянии) выдерживали в контакте с топливом в герметично закрытых контейнерах (практически при отсутствии в них воздуха — окислителя) при заданной температуре в течение определенного времени. После выдержки определяли физико-механические параметры резины прочность при растяжении, относительное удлинение, набухание, остаточную деформацию. И хотя при длительном контакте углеводороды разных классов по-разному действуют на резину [337], нитрильные резины в [c.233]

    Результаты долговременных испытаний эластомеров в различных условиях обычно моделируют с помощью набора ускоренных тестов и экстраполяции их результатов [38, 39]. Методы испьггания на ускоренное термическое старение как в ненапряженном, так и в напряженном состоянии широко используются в отечественной и мировой практике для сравнительной оценки устойчивости резин к воздействию повышенных температур, а также для прогнозирования изменения физико-механических свойств резин в процессе хранения и эксплуатации изделий. [c.420]

    Для решения вопросов производства резинотехнических изделий (РТИ) и выбора резин для конкретных изделий необходимо оценивать их физико-механические свойства. Количественные закономерности свойств полимеров значительно сложнее, чем для металлов, так как они должны учитывать фактор времени. Изучение свойств резин базируется на анализе четырех основных параметров деформации е, напряжения ст, температуры Т и времени Если для упрощения принять два параметра постоянными и следить за соотно-щением двух других, то возможны шесть различных видов испытаний  [c.42]

    Испытания на естественное атмосферное старение стандартизованы для резин, пластиков и лакокрасочных покрытий. Образцы закрепляют на стендах, которые располагают лицевой стороной к югу на открытой площадке, удовлетворяющей требованиям, предъявляемым к метеорологическим площадкам, или на плоской крыше здания. В процессе экспонирования проводят периодический осмотр внешней поверхности образцов, отмечая изменение внешнего вида, цвета, образование трещин и т. п. дефектов поверхности, а также определяют физико-механические и другие свойства материала. Систематически фиксируют метеорологические данные температуру и влажность воздуха, количество часов солнечного сияния, интенсивность суммарной прямой и рассеянной солнечной радиации, количество осадков, направление и силу ветра. В районах с большим [c.127]

    Для исследования влияния степени наполнения на механические свойства стандартной резины В-14 и резины с шифром Т-2 нами были проведены испытания, результаты которых приведены в табл. 9.3. [c.177]

    Чтобы характеризовать стойкость материала к длительным тепловым воздействиям, нельзя ограничиться определением только температуры. Для этого надо знать и время, в течение которого материал при данной температуре сохраняет свою работоспособность. Критерием работоспособности материала могут быть различные физико-механические и электроизоляционные показатели, которые позволяют эксплуатировать изделие. Выбор показателей зависит от конкретных условий работы материала. Так, в некоторых случаях нагревостойкость оценивают температурой и временем, при котором материал сохраняет половину исходной механической прочности, относительное удлинение до определенных пределов (например, до 50% при испытании резин), определенную эластичность (пленок и лаковых покрытий), пробивное напряжение до установленного значения (при испытании изоляции проводов и других электроизоляционных материалов). [c.74]

    Г, Ш. И 3 р а е л и т, Механические испытания резины и каучука, Госхимиздат, 1949. [c.123]

    Второе издание учебника (1-е издание — 1978 г.) переработано в соответствии с существующей учебной программой. Особое внимание уделено новым методам контроля качества резины и технике безопасности при проведении лабораторных работ. Введена методика подготовки ингредиентов к смешению. Методики физико-механических испытаний приведены в соответствии с новыми ГОСТами. [c.3]


    Разработка рецептов резиновых смесей слагается из следующих этапов 1) опробование резиновых смесей в лабораторных условиях с проведением физико-механических испытаний резин и последующее внесение в рецепт поправок 2) опробование резиновой смеси в производственных условиях на всех основных стадиях производства и последующее внесение в рецепт дополнительных поправок 3) проверка качества резины в необходимых случаях при эксплуатации пробной партии изделий. [c.199]

    Целью настоящего практикума является закрепление теоретического курса Технология резины , ознакомление с теоретическими основами физико-механических испытаний и приобретение учащимися практических навыков работы на оборудовании и с приборами. [c.3]

    ФИЗИКО-МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КАУЧУКОВ, РЕЗИН И ТЕХНИЧЕСКИХ ТКАНЕЙ [c.56]

    Увеличение числа образцов при испытании повышает точность получаемых результатов, С учетом возможностей каждого метода испытания в ГОСТ 269—66 приведена таблица, в которой указаны минимальное число испытуемых образцов и допустимые отклонения результатов испытаний от средних значений (см. Приложение VI). Применяемые в производстве резины делятся в зависимости от физико-механических показателей на несколько групп (см. Приложение XI). [c.60]

    Правила техники безопасности при проведении физико-механических испытаний резин и тканей [c.61]

    Для оценки зависимости механических свойств резин от температуры важно быстро довести образцы до температуры испытания, не изменяя их исходных свойств. Полученные при этом показатели теплостойкости характеризуют температуростойкость резин. Их сопоставляют с аналогичными показателями, полученными при температуре (23 2) С, и выражают коэффициентами теплостойкости при заданной температуре для данного физико-механического показателя. В общем виде коэффициент рассчитывают по формуле  [c.169]

    Где П1 — физико-механический показатель резины при комнатной температуре 23+2) °С Яа — тот же показатель при заданной температуре испытания. [c.169]

    Для оценки способности резин к эксплуатации или хранению при воздействии естественных климатических факторов влажности воздуха, осадков, ветра, кислорода и озона окружающего воздуха, температуры, солнечной радиации — испытания проводят в строго нормированных условиях на климатических станциях (площадках, верандах, навесах и жалюзных будках) и определяют стойкость к климатическому старению по времени от начала испытания до появления жесткости, трещин, пятен, изменения цвета, липкости или по физико-механическим показателям, определяемым коэффициентами старения. [c.178]

    По методу В (ГОСТ 9.030—74) определяют стойкость резин к воздействию агрессивных жидких сред в ненапряженном состоянии по изменению одного или нескольких физико-механических показателей. Образцы отбирают согласно ГОСТ 269—66. Их форма, размеры и методы испытаний соответствуют ГОСТам на определение физико-механических свойств — условной прочности при растяжении, относительного удлинения в момент разрыва, условного напряжения при заданном удлинении (ГОСТ 270—75), сопротивления раздиру (ГОСТ 262—79), твердости по Шору А (ГОСТ 263—75) и др. [c.206]

    Сущность метода заключается в определении способности резин сохранять прочностные и эластические свойства после набухания в жидких агрессивных средах в ненапряженном состоянии по изменению одного или нескольких физико-механических показателей. Определяют изменение условной прочности при растяжении и условное напряжение при заданном удлинении (см. работу 17), сопротивление раздиру (см. работу 18) и твердость ПО Шору (см. работу 15) на соответствующих стандартных видах оборудования и образцах. К испытаниям готовят удвоенное число образцов для определения показателей до и после выдержки в агрессивной среде. Приборы для набухания, применяемые среды и режимы, жидкости для промывания образцов соответствуют применяемым в практической работе 30. [c.206]

    При испытании по ГОСТ 9.030—74 по изменению массы AAI и коэффициента АЯ изменения физико-механических показателей лосле выдержки резин в агрессивной среде в течение 72 ч при температуре от 70 до 150 °С резины делят на четыре группы стойкости. К самой стойкой группе относятся резины с ДМ от —1,0 до +5,0 % и АЯ от — 15 % до +15 %, к IV группе — резины с АМ до +10 % (при вымывании) и 50 % (при набухании) и АЯ до —80 % (при деструкции) и +70 % (при структурировании). По ГОСТ 9.065—76 резины делят на три группы стойкости по времени до разрыва, по ГОСТ 9.070—76 на три группы по относительной остаточной деформации и изменению напряжения в сжатом образце, по ГОСТ 9.061—75 на три группы по динамической ползучести. [c.209]

    Первые полученные данные весьма обнадеживающие, однако нет сообщений о дальнейших испытаниях пласто-эластических свойств каучуков и резиновых смесей, а главное - физико-механических показателей резин на их основе. [c.31]

    Расширенные физико-механические испытания резиновых смесей и резин представлены в таблице 2.26. [c.52]

    Изложение материала начинается с рассмотрения механики деформации резины и установленных в этой области закономерностей. Затем, по возможности полно, описываются аппаратура и методы, применяемые при определении основных видов механических характеристик, т. е. Тпри испытаниях на растяжение, сжатие, определении твердости, сопротивления истиранию и т. д. Отдельные главы посвящены устройству разрывных машин, измерению пластичности каучука и невулканизованных смесей, испытанию резины при многократных нагрузках, оценке амортизационной способности резины и механическим испытаниям эбонита. [c.11]

    Как отмечает Берри, исследования прочности полимеров развиваются в двух направлениях. Первое относится к механике разрушения и к энергетическому подходу исходя из работ Гриффита и модели упругого твердого тела с микротрещиной, т. е. рассматриваются макроэффекты разрушения. Второе направление относится к физике (кинетике) разрушения и рассматривает молекулярноатомные механизмы и микромеханику разрушения. На Западе предпочитают первый подход (Гриффита), в СССР — второй (Журкова). Рассмотрим вначале результаты первого подхода к эластомерам. В этих опытах исследования механики разрушения проводились на образцах эластомеров и резин с искусственными надрезами. Методика испытания образцов с надрезом получила название испытания на раздир, который широко изучался в работах Ривлина и Томаса [12,1], Томаса [12.2] и других исследователей [12.3 12.4 82]. В процессе испытаний на раздир определялась энергия разрушения, которая зависела от заданной скорости движения зажимов. Энергия раздира включает свободную энергию образования новых поверхностей и механические потери, причем механические потери столь велики, что превышают свободную поверхностную энергию на много порядков. Эластомер считается тем прочней, чем большие затраты работы внешних сил требуются на раздир. [c.334]

    На рис. 59 показано изменение механических свойств резиновой изоляции на основе бутилкаучука у кабеля, находящегося длительное время под токовой нагрузкой при температуре на токопроводящей жиле 85 и 120° С. Как видно на рисунке, снижение относительного удлинения резины замечалось за первые 40 недель испытания. Затем относительное удлинение на довольно высоком уровне сохранялось в течение длительного времени. После 5,5 лет испытания кабелей при 85° С на жиле изоляция имела относительное удлинение 220%, а при 120°С—115%. На основании проведенных длительных испытаний в США для кабелей напряжением до 600 в с бутилкаучуко-вой изоляцией допускают температуру на жиле при длительной эксплуатации 90° С, а для кабелей напряжением от 601 в до 15 кв — 85° С. Максимально допустимая температура для наиболее теплостойких (тиурамовых) резин на основе других видов каучука по тем же нормам 75° С. В СССР максимально допустимая температура для тиурамовых резин принята 65° С. [c.193]

    По вопросам прнготов.чения резиновых смесей н характеристики свойств каучуков и резины см. И з р а е л и т Г. Ш., Механические испытания резины н каучука, Госхимнздат, Москва, 1949 р. —г Прим. ред. [c.36]

    Всесоюзная контора Реготмас проводила испытания стеклянных фильтровальных тканей, изготовленных из алюмоборосили-катного бесщелочного стекла, саржевого и гарнитурного переплетений. Эти ткани применяли в качестве фильтрующей перегородки к рамному фильтрпрессу установки типа ВИМЭ-2. Было выявлено, что ткань гарнитурного переплетения для тонкой очистки масла Не может быть применена, так как она пропускает механические примеси (до 0,05—0,08%). Ткань саржевого (диагонального) переплетения обеспечивает хорошую степень очистки — одинаковую с фильтровальной технической бумагой, принятой за эталон. Эта ткань ТСФ может быть использована при условии переоборудования фильтрпресса с таким расчетом, чтобы не было контакта между чугунными поверхностями плит и рам фильтра, так как в этом случае ткань подвергается быстрому истиранию, что приводит к ее прорыву. Прокладки из маслобензостойкой резины или картона, изолирующие стеклянную ткань от соприкосновения с ме- [c.136]

    Испытания СКДИ в лабораторных условиях и на шинных заводах показали близость физико-механических свойств резин на основе СКД п СКДИ, но прп этом каучуки СКДИ обнаружили повышенную усталостную выносливость, а также улучшенные технические свойства. [c.173]

    Резина является многокомпонентной системой и не обладает микрооднородной структурой из-за различной длины макромолекул каучука и разветвленности его цепей, неравномерности распределения в каучуке ингредиентов с разной степенью дисперсности. В режимах приготовления полуфабрикатов и готовых изделий возможны отклонения. В связи с этим получить сходящиеся результаты крайне затруднительно. Получение точных показателей физико-механических испытаний зависит от следующих условий  [c.60]

    Количественное определение степени диспергирования имеет большое значение в производсгве резины. В заводских условиях режим смешения устанавливазтсч таким образом, чтобы обеспечить необходимую степень диспергирования в готовой смеси. Простейшие оценки делаются визуально по блеску среза смеси и степени неровности его поверхности, а также количественно — после вулканизации по данным физико-механических испытаний. [c.201]

    Результаты физико-механических испытаний резин из ХСКЭП, СКЭП и наирита сопоставлены в [52]. Некоторые из них приведены ниже  [c.199]

    Одним из основных преимуществ натурального каучука перед синтетическим стереорегулярным изопреновым каучуком является повышенная клейкость резиновых смесей на его основе и более высокая сопротивляемость резин старению. Как показывают многочисленные исследования, причиной такого явления является наличие в натуральном каучуке природных белков, причем первостепенную роль играют белковые фрагменты непосредственно связанные с макромолекулами каучука. Исследованные образцы латекса НК содержат 3,5-3,7% масс, белка, из которых 1,1-1,2% приходятся на гидрофобизирован-ные белки и до 0,05% фосфолипидов. Именно наличие природных белков позволяет обеспечивать высокий уровень технологических свойств резиновых смесей и физико-механических свойств резины. По этой причине были развернуты широкие испытания изопреновых каучуков, содержащих различные виды белков. Большие надежды возлагались на каучуки СКИ-3, модифицированные сульфитом натрия с белкозином и нитритом натрия соответственно (табл. 2.3). Предполагалось, что эти каучуки придадут резиновым смесям высокую клейкость и обеспечат высокий уровень адгезии резин к кордам. В результате проведения расширенных лабораторных и промышленных испытаний выяснилось, что несмотря на увеличение адгезии и улучшение пласто-эластических свойств смесей их клейкость осталась на уровне смесей на основе СКИ-3 и СКИ-3-01, но существенно ухудшилось сопротивление подвулканизации и увеличилась усадка после каландрирования. В этой связи данные каучуки не нашли широкого применения в шинной промышленности. [c.29]

    Более широкие испытания каз ука СКИ-3 МАБ, а также других модифицированных изопреновых каучуков были проведены НИИШПом. Результаты испытаний даны в таблице 2.12, Проведенные испытания резиновых смесей стандартных рецептур еще раз показали высокую когезионную прочность смесей на основе СКИ-ЗМАБ. По физико-механическим показателям резины на основе СКИ-ЗМАБ близки к резинам из натурального каучука, [c.37]

    В таблице 2.17 весьма интересны результаты, полученные при испытании смесей и резин из каучука СКИ-3, физически модифицированного ультрадисперсными наполнителями за счет синтеза в эластомерной матрице энергонасыщенных частиц размером до 10 м [18]. В качестве энергонасыщенных частиц выступают сульфаты или карбонаты кальция и бария. При исследовании образцов изопренового каучука, модифицированных ультрадисперсными частицами минеральных наполнителей, было установлено, что синтез "in situ" 0,4-0,8% масс, на 100 масс. ч. каучука ультрадисперсных частиц обусловливает значительное изменение макроструктуры эластомера, способствует усилению протекания ориентационных и кристаллизационных процессов. Кристаллизация при растяжении начинается в модифицированном каучуке при меньших (на 50-150%) удлинениях, а степень кристалличности при пониженных температурах на 20-30% больше, чем в немодифицированных. Именно структурные изменения обусловили повышение в 4-10 раз когезионной прочности наполненных резиновых смесей, на 40-60% физико-механических показателей резин, снижение гисте-резисных потерь. Как видно из таблицы 2.17, по большинству [c.43]


Библиография для Резины испытания механические: [c.123]    [c.487]    [c.243]    [c.95]    [c.391]    [c.560]   
Смотреть страницы где упоминается термин Резины испытания механические: [c.60]    [c.353]   
Энциклопедия полимеров том 1 (1972) -- [ c.0 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.0 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Испытания антикоррозионных резин механические

Классификация механических испытаний и значение испытаний резины на растяжение

Методы механических испытаний и резины

Механические испытания пластмасс резин

Механические потери при испытаниях резины на эластичность по отскоку

Минимальное число образцов и допускаемые отклонения при физико-механических испытаниях резин

Подготовка и проведение физико-механических испытаний резин

Правила техники безопасности при проведении физико-механических испытаний резин и тканей

РАЗДЕЛИ ИССЛЕДОВАНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ РЕЗИНЫ И МЕТОДЫ ИСПЫТАНИЙ

Размеры и масса заготовок для формования образцов, применяемых для физико-механических испытаний резин

Резина испытания

ФИЗИКО-МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ КАУЧУКОВ, РЕЗИН И ТЕХНИЧЕСКИХ ТКАНЕЙ Значение контроля физико-механических показателей в производстве резиновых изделий

Физико-механические испытания каучуков и резин

Физико-механические испытания каучуков, резин и технических тканей Методы контроля качества материалов, резин н готовых изделий



© 2025 chem21.info Реклама на сайте