Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура и электропроводность

    В группе 1УБ разница между свойствами первого и последнего членов группы максимальна. От неметаллических элементов—углерода и кремния, через германий — металлоид, с промежуточными свойствами, происходит переход к олову и свинцу, которые являются металлами. Углерод и кремний имеют ковалентную макромолекулярную структуру. Углерод (исключая графит) является изолятором. Кремний и германий обладают полупроводниковыми свойствами. Олово и свинец, имея металлическую структуру, электропроводны, кроме а-олова со структурой типа алмаза. [c.504]


    Электрофизические свойства углеродных материалов непосредственно связаны с их структурой. Электропроводность различных структурных модификаций углерода является предметом многочисленных исследований, результаты которых суммированы в [1, 3, 4, 14, 15, 19, 21]. [c.29]

    Электрические и оптические свойства. Наиболее характерное свойство металлов, обусловленное целиком их внутренней структурой, — электропроводность. Металлы — проводники первого рода. Способность проводить электричество обусловлена наличием в их кристаллических решетках свободных электронов, которые при наложении электрического поля на металлический проводник получают направленное движение. Для возникновения этого движения, т. е. электрического тока, достаточно даже очень небольшого напряжения поля (небольшой разности потенциалов иа концах проводника). С повышением температуры электропроводность металлов уменьшается. Это объясняется тем, что ионы, находящиеся в узлах кристаллической решетки металла, способны совершать колебательные движения, которые усиливаются с повышением температуры, что препятствует направленному движению электронов. Сильно уменьшается электропроводность при плавлении Металлов. [c.203]

    Обычно, когда раствор переходит в гель, физические и химические свойства системы изменяются мало, за исключением очевидного появления механической структуры. Электропроводность геля в присутствии электролитов фактически та же, что и в жидкости. Если же содержание электролита в растворе желатины очень мало, то раствор имеет несколько большую проводимость, чем гель. Фрейндлих и Абрамсон нашли, что электрофоретическая подвижность частиц кварца одинакова как в геле желатины, так и в растворе желатины. [c.384]

    Устойчивые в обычных условиях модификации — серый мышьяк, серая сурьма и висмут — имеют металлический вид, электропроводны, но хрупки. Они изоморфны, имеют слоистую структуру (рис. 163) типа черного фосфора. Каждый из атомов пирамидально связан с тремя соседними по слою и имеет трех ближайших соседей в другом слое. В ряду Аз — 8Ь — В1 различие межъядерных расстояний внутри и между слоями уменьшается (0,063—0,050—0,037 нм), т. е. происходит постепенно приближение к характерному для металлических структур равенству межъядерных расстояний. Благодаря близости параметров кристаллических решеток сурьма образует твердые растворы с мышьяком и висмутом, но последние друг с другом их не образуют. [c.380]


    Метод Бьеррума содержит те же упрощения, что и модель Дебая— Хюккеля, в частности в отношении точных методов подсчета энергии пар ионов на малых расстояниях, когда, несомненно, большую роль играет молекулярная структура.. Тем не менее эта теория представляет значительный шаг вперед и дает удобную основу для оценки взаимодействий между ионами. Фуосс [51] рассмотрел вопрос о произвольном выбо ре критического расстояния г в и показал, что любое расстояние, на котором сила взаимодействия ионов составляет величину около 2кТ, дает аналогичные результаты. Фуосс совместно с Краусом применили описанную выше теорию к случаю диссоциации сильных электролитов в среде с меняющейся диэлектрической проницаемостью [52]. Было получено весьма хорошее совпадение теоретических расчетов и экспериментальных определений электропроводности. [c.453]

    Искажения структуры решетки затрудняют перемещение электронов внутр -твердого раствора, и это приводит к уменьшению электропроводности, падению термоэлектродвижущей силы этих растворов. Именно искажением решетки объясняется то, что в твердых растворах до сих пор не обнаружена с достоверностью сверхпроводимость. [c.409]

    Высокие теплопроводность И электропроводность металлов заставляют предположить, что валентные электроны их атомов способны относительно свободно перемещаться внутри кристаллической структуры металла. На рис. 14-22 изображена одна из моделей строения металлов, согласно которой электроны образуют газ из отрицательных зарядов, прочно скрепляющий положительные ионы металла в единое целое. На рисунке схематически указаны положительно заряженные ионы, остающиеся после отрыва от атомов валентных электронов эти ионы содержат [c.623]

    Было отмечено аномальное распределение локальной пористости в осадке, когда максимальная пористость находится на некотором расстоянии от фильтровальной перегородки. При этом пористость в различных слоях осадка определялась по электропроводности с применением игольчатых электродов, вводимых в осадок и в некоторой мере нарушающих его структуру. С использованием дисковых электродов, являющихся частью внутренней поверхности фильтра и не влияющих на структуру осадка, было установлено, что распределение пори- [c.181]

    Для определения параметров гидродинамической структуры насадочного аппарата в полном его объеме с учетом влияния всех присущих ему неоднородностей были проведены опыты с индикатором. Возмущения наносились импульсным и ступенчатым методами. В качестве индикатора использовался раствор КС1. Ввод импульсов раствора производился в ороситель колонны. Ячейка анализа выходной концентрации, работающая по принципу измерения электропроводности, была помещена непосредственно под нижней границей насадочного слоя. Запись выходной концентрации осуществлялась непрерывно. Обработка экспериментальных кривых распределения производилась с коррекцией результатов на дополнительные объемы до и после исследуемой секции колонны. [c.359]

    Нами было показано, что для кокса плотностью 2,10 ири 700 °С имеется экстремум в величинах объемной усадки (на 20%) и удельного электросопротивления (см. рис. 70 и 81). Снижение удельного электросопротивления является следствием процесса интенсивного сближения углеродных образований, элементов электропроводности. Для кокса плотностью 2,14 г/сж эти экстремумы наблюдаются при температуре 650 °С, а для кокса плотностью 2,06 г/см — около 725 °С. Обрыв боковых углеродных цепей, образование плоскостных углеродных сеток со сравнительно небольшим числом жестких межплоскостных связей приводят к созданию полимерных молекулярных структур со сравнительно небольшим молекулярным объемом и наибольщей пластичностью. Это подтверждается нашими данными по определению прессовых характеристик кокса. [c.233]

    Кристаллическая структура парафинов исследовалась многочисленными авторами при помощи поляризационных микроскопов, рентген-аппаратов и электронных микроскопов. Изучали зависимость плотности, показателя преломления, электропроводности и других свойств парафина от его кристаллической структуры. Для исследований использовали чистые индивидуальные углеводороды, товарные парафины, смеси парафинов с различными добавками и лп. [c.81]

    Физические свойства материала детали. Для контроля магнитнопорошковым методом материал детали должен быть ферромагнитным и однородным по магнитным свойствам. Для токовихревого контроля материал должен быть электропроводным, однородным по структуре и изотропным по магнитным свойствам. Для ультразвукового контроля на трещины материал также должен быть однородным, мелкозернистым по структуре, упругим, с малым коэффициентом затухания ультразвуковых колебаний, а для контроля капиллярными методами — непористым и стойким к воздействию органических растворителей. [c.486]


    Как уже указывалось, нефтяные коксы могут использоваться в народном хозяйстве в сыром виде и после предварительной обработки. При использовании кокса в электродной промышлеиности (производство электродов, анодов, конструкционных материалов) он должен пройти стадию прокаливания при ПОО—1300 °С, в результате чего упорядочивается его структура, увеличивается тепло- и электропроводность, уменьшается содержание неуглеродных элементов и улучшаются другие его свойства. Для удаления гетероэлементов, в частности серы, требуются более жесткие условия. Так, температура обессеривания сернистых коксов находится в пределах 1400—1600°С. [c.195]

    Иа стадии графитации (при температурах 2200—2800 °С) начинается укладка кристаллитов двумерной упорядоченности в кристаллы трехмерной упорядоченности ири этом достигается максимальная плотность II электропроводность и улучшаются другие свойства конечного продукта графитации. Расстояние между слоями структуры графита составляет 3,35 А, а истинная плотность равна 2,26 г/см . [c.199]

    Значительно меньшие нарушения структуры должны вызывать открытые стержневые датчики. На рис. И. 18 приведена конструкция подобного зонда и картина распределения электрического поля в нем, снятая на плоской модели из электропроводной бумаги. Даже при идеальной цилиндрической симметрии электриче- [c.82]

    При использовании электропроводных, намагничиваемых и других твердых материалов с особыми свойствами можно накладывать на процесс постоянные или переменные электромагнитные поля [254]. Таким образом, может быть организован дополнительный подвод теплоты, изменена структура слоя или же, например, создана эффективная система улавливания уноса. [c.258]

    Несмотря на большое число попыток связать каталитическую активность веществ с теми или иными их физическими или физико-химическими свойствами — структурой, электропроводностью, работох выхода электронов, магнитной восприимчивостью и т. п.,— сколько-нибудь существенных успехов в решении на такой основе проблемы научного предвидения каталитической активности не достигнуто. [c.56]

    Наиболее систематично изучена электропроводность хлоридов. Бильц и Клемм измеряли эквивалентную электропроводность хлоридов при температуре их плавления. Эти данные они представили в соответствии с положением катиона в периодической системе Менделеева (табл. 99). Из таблицы видно, что в горизонтальных рядах с увеличением валентности катиона эквивалентная электропроводность падает. В отдельных рядах переход- от хорошо проводящих солей к плохо проводящим происходит скачкообразно. Проведенная в таблице жирная линия делит соли на хорошие и плохие проводники тока. Левее этой линии находятся соли, хорошо проводящие ток, имеющие ионную структуру. Правее — соли с малой электропроводностью, имеющие молекулярную структуру. -Электропроводность расплавов связана с их вязкостью. Для большинства распларов связь электропроводности и вязкости определяется уравнением. Евстропьева К 71 = onst, где 7) — вязкость т—коэффициент, характерный для данной соли или данного расплава, но не зависящий от температуры. [c.405]

    Введение электропроводящих наполнителей (особенно порошков металлов) в большом количестве значительно ухудшает физикомеханические свойства пластмасс. Поэтому большое значение имеет повышение электропроводности при минимальном содержании наполнителя, т. е. оптимизация структуры электропроводных материалов. Это достигается введенпем сажи в латекс каучука [328] использования магнитного поля для ориентации частиц ферромагнитного напо.лнителя [329, 330] покрытия частиц полимера частицами сажи и последующего смешивания с полимером, содержащим летучую смазку [331] подбора полимерного связующего, препятствующего образованию крупных ассоциатов сажи [332] использования вместо сажи углеродной ткани, обработанной в метане или других восстановительных газах при 1700—2200 °С [333] применения графита, предварительно обработанного хлоридом железа (П1) [334] введения ПАВ в саженаполненные полимеры [40, 335] и т. п. [c.176]

    В 1905 г. Краус и Фрэнклин [101] сообщили, что интенсивно окрашенные растворы смл4Л1-тринитробензола, смжж-тринитротолуола и 2,4-динитротолуола в жидком аммиаке обладают электропроводностью, характерной для солевых структур. Электропроводность растворов ж-динитробензола в жидком аммиаке [102], смжл-тринитробензола в пиридине и смеси этанол — диэтиламин [35], а также 2,6-динитротолуола в жидком аммиаке [104] увеличивается со временем. Найдено, что для 2,6-динитротолуола скорость возрастания электропроводности подчиняется уравнению скорости первого порядка [104]. Электропроводность растворов. и-динитробензола в жидком аммиаке, имеющих голубую окраску, связывают с процессом переноса электронов, протекающим следующим образом [102]  [c.270]

    Ну, а дальше — всевозможные добавки, отзывчивые к действию магнитного или электрического полей, и вода становится водой , приобретая новые свойства и функции. Скажем, по а. с. 931959 шланг, заполненный феррожидкостью, используют как рабочий орган насоса. А плоскую гибкую оболочку, заполненную электрорео-логической жидкостью,— как щит опалубки (а. с. 883524). Вода и кирпич постепенно сближаются по устройству и свойствам. Трудно, например, сказать, чего больше — кирпича или воды — в структуре по а. с. 934143 Шланг, содержащий внутренний и наружный слой, между которыми расположены слои электропроводных нитей, разделенных между собой слоем гибкого изоляционного материала, отличающийся тем, что, с целью возможности управления жесткостью, гибкий изолирующий материал выполнен пористым и пропитан электрореологической суспензией . [c.117]

    Такие свойства, как температуры плавления и кипения, механическая прочность и твердость, определяются прочностью связи между молекулами в данном веществе при данном его агрегатном состоянии поэтому применение подобных понятий к отдельной молекуле не имеет смысла. Плотность — это свойство, которым отдельная молекула обладает и которое можно вычислить. Однако плотность молекулы всегда больше плотности вещества (даже в твердом состоянии), потому что в любом веществе между молекулами всегда имеется некоторое свободное пространство, А такие свойства как электропроводность, теплоемкость, определяются не свойствами молекул, а структурой вещества в целом. Для того чтобы убедиться в этом, достаточно вспомнить, что эти свойства сильно изменяются при изменении агрегатного состояния вещества, тогда кан молекулы при этом не претерпевают глубоких изменений. Таким образом, понятия о некоторых физических свойствах не применимы к отдельной молекуле, а о других — применимы, но сами эти свойства по своей величине различны для модекулы и, для вещества в целом. [c.20]

    Большое число работ убедительно демонстрирует отличие свойств жидкости, находящейся вблизи поверхности, от свойств в ее объеме [14, 36, 87, 114, 466—475]. Так, обнаружена аномалия диэлектрических свойств [469, 470], эффект ск ачкообразно-го изменения электропроводности [470], изменение вязкости в зависимости от расстояния до твердой- стенки [114, 471, 472], появление предельного напряжения сдвига жидкости при приближении к поверхности твердого тела [14, 473, 474]. Для набухающего в водных растворах 1 а-замещенного монтмориллонита обнаружена оптическая анизотропия тонких прослоек воды [36] найдено изменение теплоемкости смачивающих пленок нитробензола на силикатных поверхностях [475]. Установлено отличие ГС от объемной жидкости по растворяющей способности, температуре замерзания, теплопроводности, энтальпии. В. Дрост-Хансеном опубликованы обзоры большого числа работ, содержащие как прямые, так и косвенные свидетельства структурных изменений в граничных слоях [476—478]. В качестве косвенных доказательств автор приводит, в первую очередь, существование изломов на кривых температурной зависимости ряда свойств поверхностных слоев. Эти температуры отвечают, согласно Дрост-Хансену, разной перестройке структуры ГС. Широко известны также работы Г. Пешеля [479] по исследованию ГС жидкостей (и, прежде всего, воды) у поверхности кварца в присутствии ряда электролитов. [c.170]

    Переходные металлы часто входят в ярко окрашенные соединения со сложными формулами. Хотя Pt l существует как простое соединение, известны другие соединения, в которых Pt связан с двумя-шестью молекулами NH3 или с КС1 (табл. 20-1). По какой же причине подобные нейтральные и на первый взгляд способные существовать изолированно соединения ассоциируют с другими молекулами и почему они входят в образующиеся новые соединения в различных пропорциях Измерение электропроводности растворов этих соединений, а также осаждение ионов С1 ионами Ag + показывают, сколько ионов присутствует в водном растворе. Данные, полученные этими и другими способами, заставляют предположить, что обсуждаемые соединения обладают ионными структурами, перечисленными в последней колонке табл. 20-1. Указанные там вещества, содержащие аммиак, представляют собой координационные соединения, в которых молекулы NH3 располагаются вокруг центрального иона Pt. Комплексы Pt(IV) содержат октаэдрически координированные молекулы [c.205]

    В соответствии с геометрическим строением элементов твердой фазы выделяются корпускулярные, губчатые, сетчатые, пластинчатые, волокнистые п другие типы структур, в пределах которых также существует множество разновидностей. К корпускулярным структурам, например, относят тела, в которых поры образованы промежутками (пустотами) между компактными частицами, составляющими скелет тела, а поры губчатого строения представляют собой каналы и иолостп в сп.тошном твердом теле. Возможны смешанные структуры, в которых содержится несколько типов элементов. По принципу дополнительности аналогичная к.тассп-фикация справедлива и для описания пространства пор. Принцип дополнительности играет основную роль прп выборе моделей для описания физико-химических явлений и процессов в пористых средах. Например, при описании таких явлений, как фильтрация, диффузия, капиллярная конденсация, капиллярное всасывание, высыхание, электропроводность и т. п., используются модели, описывающие строение пространства пор, тогда как для решения задач прочности, деформации, ползучести, коррозии, отвердевания и т. п. 1юп0льзуются в основном модели строения твердого скелета. [c.127]

    Электропроводимость грунтов, которая колеблется от нескольких единиц до сотен Ом на метр зависит главным образом от его влажности, состава и количества солей и структуры. Увеличение засоленности грунта облегчает протекание анодного процесса (в результате депассивирующего действия особенно галоидных солей), катодного процесса (например, ускорение катодного процесса окисными солями железа) и снижает электросопротивление. Во многих случаях величина электропроводности почв и грунтов с достаточной точностью характеризует их коррозионную агрессивность для стали и чугуна (за исключением водонасыщенных грунтов) и используется в этих целях. Ниже приведена характеристика коррозионной активности грунтов по их удельному сопротивлению  [c.387]

    Представленная на рис. 3.22 кристаллическая решетка графита отвечает идеальному кристаллу в зависимости от условий получения обра уются углеграфитовые материалы с более или менее искаженной структурой. В частности, получены и широко используются стекловидная форма графита (стеклографит), пирографит—материал с сильно выраженной анизотропией тепло- и электропроводности (значения этих свойств различаются в зависимости от направления в образце почти на 2 порядка), тончайшее и очень прочное графитовое волокно (из него изготовляют ткань, выдерживающую в отсутствии окислителей температуру 2000 °С). [c.354]

    Соединения. При нагревании с водородом 5с, У, Ьа образуют гидриды ЭНг (при недостатке водорода) и ЭНз (при избытке Нг). ЭНг и ЭНз — твердые вещества серого или черного цвеч-а, электропроводны. ЭНг имеют решетку флуорита (СаРг), ЭН1 — фазы внедрения атомов Н в структуру ЭНг. Гидриды ЭНг в отличие от гидридов других -элементов легко окисляются кислородом и реагируют с водой с выделением Нг (подобно гидридам 5-элементов).  [c.499]

    В. И. Касаточкин с сотрудниками [98—103, 148] все коксы, в том числе и нефтяные, относит к карбонизированным веществам. За исключением графитов все карбонизированные вещества являются аморфными сте.клоподобными высокополимера-ми. Основным структурным элементом карбонизированного вещества является плоская атомная сетка циклически полиме-ризованного атома углерода с боковыми радикалами в виде разветвленных цепей по всем трем измерениям линейно полимеризованных атомов углерода. Химические превращения в процессе термической обработки углеродистых веществ сопровождаются относительным возрастанием содержания углерода (карбонизацией) и глубокими изменениями молекулярной структуры. При этом создается межсеточная упорядоченность, увеличиваются размеры углеродных сеток и возрастает электропроводность вещества. [c.66]

    Электропроводность углерода и углеродистых материалов аналогична электропроводности полупроводников. Подвижность носителей тока в полупроводниках возрастает при переходе от аморфного состояния к кристаллическому. Непрокаленный кокс имеет аморфную структуру и характеризуется весь- [c.206]

    Электропроводность воды чрезвычайно мала. Кристаллы воды образуют решетку молекулярного типа. Давление пара при различных температурах см. табл. IV.2 Приложения. Сравнительно высокая температура кипения воды объясняется особенностями ее структуры в жидком состоянии, сильным межмолекуляриым взаимодействием, вызванным преимущественно водородными связями. Плотность большинстна растворителей с повышением температуры уменьшается, тогда как плотность воды при повышении темпера-ож0 дд увеличивается, достигает максимальной величины при 4°С (1,000 г/см ) и уменьшается прн дальпеп-и повышении температуры. Значения [c.170]

    В наибольшей степени различия в структуре коксов проявляются при температурах выше 1300°С-различия величин структурных показателей могут увеличиться в 2-3 раза. Такая особенность коксов определяет области их использования. Хорошая структурированность игольчатых коксов предопределяет их высокую анизотропность, высокую кристалличность и электропроводность, низкий ТКЛР, отвечающих требованиям работы в электросталеплавильных печах. Низкая структурированность изотропных коксов, наличие мелких кристаллов определяет высокую прочность кокса и соответствующих изделий из него. [c.23]

    Продукт, полученный после обжига, состоит из кокса-наполнп-теля и кокса, образовавшегося при коксовании связующего. Поскольку температура прокаливания (1100—1300 °С) и обессеривания (1450 °С) нефтяных коксов обычно другая, чем при обжиге заготовок, возникают различия в физико-химических свойствах (механическая прочность, реакционная способность, пористость, электропроводность и др.) кокса-наполнителя и кокса, образовавшегося из связующего. Наиболее однородной и, следовательно, лучшей по качеству электродная продукция будет при использо-ватт наполнителя и связующего, близких по степени анизометрни структуры частиц и при максимальном приближении условий прокаливания наполнителя и обл<ига зеленых заготовок (наполнитель, смешанный с пеком в необходимом количестве). В принципе такие условия могут быть достигнуты при следующих комбинациях компонентов зеленых заготовок нефтяной кокснефтяной пек пековый кокс+каменноугольный пек нефтяной кокс+каменноугольный пек пековый кокс + нефтяной пек. Для выбора типа пеков и коксов, позволяющих получать зеленые заготовки и далее из них электродные изделия (заготовки) с требуемыми качествами, необходимы дополнительные исследования. [c.95]

    По заключению потребителей электродной продукции [72], из нефтяных коксов анизотропной структуры получают электроды высокого качества. Электропроводность п термостойкость графптиро- [c.97]

    Нефтяные углероды (нефтяные пеки, коксы и сажи) можно использовать в народном хозяйстве в сыром виде и после предварительного их облагораживания. Некоторые сорта нефтяных пеков после их формования должны с целью получения конечного продукта пройти стадию карбонизации и графитации. При использовании нефтяного кокса в электродной промышленности (производство электродов, конструкционных материалов) он должен пройти стадию прокаливания при 1100—1400 °С, в результате чего упорядочивается его структура, увеличивается тепло- и электропроводность, уменьшается содержание неуглеродиых элементов, регулируются и улучшаются поверхностные и другие свойства. [c.187]

    В базисной плоскости соседние атомы углерода удерживаются химическими связями, а сами плоскости образуют кристаллиты, сзязанлые силами Ваи-дер-Ваальса. Такая структура обусловливает анизотропию свойств графита. Электропроводность, сжимаемость, тепловые свойства, сиособность к взаимодействию с различными химическими рсагеитами и другие свойства значительно зависят от направления воздействия па слои графита. [c.215]

    Небольшое содержание металлических примесей и гетероэлемеи-тов (О, 5, Ы), высокая активность, а также возможность изменением структуры увеличивать иа несколько норядков (в 10 раз) электропроводность делают нефтяные коксы незаменимым материалом, ненользуемым в ряде отраслей промышленности. Так, нефтяные коксы можно употреблять для следующих целей  [c.14]


Смотреть страницы где упоминается термин Структура и электропроводность: [c.318]    [c.378]    [c.411]    [c.452]    [c.643]    [c.83]    [c.341]    [c.207]    [c.81]    [c.97]    [c.50]    [c.171]    [c.202]   
Современная общая химия Том 3 (1975) -- [ c.3 , c.96 , c.97 ]

Современная общая химия (1975) -- [ c.3 , c.96 , c.97 ]




ПОИСК





Смотрите так же термины и статьи:

Электропроводность в упорядоченных и неупорядоченных структурах



© 2025 chem21.info Реклама на сайте