Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

оксид ди оксид

    Оксид алюминия (АЬОз) тугоплавок, его пары чрезвычайно медленно образуются при обычных температурах в пламени. Поэтому, если в растворе пробы ион алюминия присутствует в значительных концентрациях, то в пламени, очевидно, могут образоваться частицы оксида алюминия, которые полностью не испаряются. Атомы, захваченные этими частицами, не дают аналитического сигнала. Такого рода помехи могут быть вызваны и другими элементами, например титаном, цирконием, ванадием и танталом, которые образуют тугоплавкие оксиды. Для того чтобы уменьшить эти физические помехи, можно использовать приемы, рассмотренные выше для случаев химических помех  [c.685]


    Хром образует три оксида оксид хрома ), или закись хрома, СгО, имеющий основный характер, оксид хрома[ ), или окись хрома, СггОз, проявляющий амфотерные свойства, и оксид хро-жа(У1), или хромовый ангидрид, СгОз — кислотный оксид. Соответственно этим трем оксидам известны и три ряда соединений хрома. [c.634]

    На основании ИК-спектроскопических исследований гидроксильного покрова оксида магния, подвергнутого термовакуумной обработке при различных температурах, установлено существование нескольких типов ОН-групп, которым соответствуют полосы поглощения 3750, 3710 и 3550 см [41, 69]. Полоса поглощения 3710 см исчезает после термовакуумной обработки оксида выше 470 К. После прогрева оксида магния при 870 К в его спектре остается только полоса поглощения 3750 см , которая исчезает лишь при термообработке оксида выше 1200 К [70]. Эта высокочастотная полоса поглощения относится к свободным поверхностным ОН-группам. Другие полосы поглощения отнесены к разным типам ОН-групп, связанным с различным числом атомов магния. Отсутствие заметных сдвигов полос поглощения при адсорбции на поверхности оксида магния веществ различной природы объясняется основным характером ОН-групп. На поверхности чистого оксида магния не обнаружены бренстедовские и льюисовские кислотные центры. [c.77]

    Методом неупругой туннельной электронной спектроскопии показано, что на границе с оксидами алюминия отверждения системы эпоксидная смола — алифатические амины не происходит даже при повышенной температуре [139]. Это объясняют селективной адсорбцией компонентов клея и нарушением их стехиометрического соотношения. Аминные группы необратимо сорбируются на поверхности оксидов алюминия, а эпоксидная смола адсорбируется только физическими силами. Поверхность других металлов может влиять на отверждение эпоксидов противоположным образом. Так, было обнаружено, что если о степени отверждения пограничных слоев отвержденных эпоксидных клеев на поверхности титана судить по показателю преломления, то по мере удаления от границы раздела показатель преломления и, следовательно, степень сшивания полимерной прослойки снижаются [140]. Авторы считают, что это является следствием каталитического влияния оксидов титана, образующихся при подготовке металла под склеивание, на процесс полимеризации. Повышение полярности отвердителя эпоксидных смол приводит к увеличению его активности по отношению к [c.94]


    При сгорании дизельного топлива сернистые соединения любого строения образуют оксиды серы 802 и 80з, которые могут вызывать коррозию металлов при низкой и высокой температурах. Низкотемпературная коррозия связана с конденсацией из продуктов сгорания водяных паров на металлических поверхностях и растворением в конденсате оксидов серы с образованием сернистой и серной кислот. Высокотемпературная коррозия (600-900 °С) обусловлена газовой коррозией за счет непосредственного соединения металлов с серой. [c.104]

    Один из оксидов углерода характеризуется отношением масс углерода к кислороду, равным 0,75, а другой оксид-отношением 0,375. Если один из оксидов имеет формулу СО (Дальтон полагал, что так оно и должно быть), то, как показывает табл. 6-2, другой должен иметь формулу СОз-Следовательно, атомная масса углерода должна равняться 6. Если же второй оксид имеет формулу СО, то тогда первый из них должен иметь фор- [c.281]

    Согласно имеющимся данным, 103,6 г свинца соединяются с 16 г кислорода, т.е. с 1 молем атомов кислорода, но этого еще не достаточно, чтобы установить атомную массу свинца, если неизвестна химическая формула оксида свинца. Следовательно, мы снова попадаем в тот порочный круг рассуждений, из которого Канниццаро удалось выбраться в случае легких элементов. Если бы формула оксида свинца была РЬО, атомная масса свинца должна была равняться 103,6. Но если оксид свинца имеет формулу РЬзО, атомная масса свинца имеет значение 51,8, а если правильна формула РЬОз, атомная масса свинца должна быть равна 207,2. Попробуйте показать, что в общем случае если формула оксида свинца имеет вид РЬ,0 , то атомная масса свинца должна быть равна 103,6-у/х. Такая задача имеет несколько рещений. [c.291]

    В качестве промотора молено использовать оксиды никеля, наносимые на шамот (в виде нитратов) последующее прокаливание при 400 °С позволяет полностью удалить кислотные оксиды. Оксиды никеля резко усиливают скорость реакций, происходящих при сгорании топлива. Активация шамота может быть достигнута дешевыми и легкодоступными оксидами железа, которые осаждают на поверхность шамота (10% РегОз с добавками 0,1% К2О и 0,2% АЬОз). [c.285]

    Кислотный оксид - оксид неметалла, образующий с водой кислоту, например диоксид углерода (углекислый газ) СО . [c.15]

    Основной оксид - оксид металла, образующий с водой основание, например оксид кальция СаО. [c.15]

    Амфотерный оксид - оксид, реагирующий с кислотой как основание, а с основанием как кислота, например оксид алюминия Al Og. [c.15]

    Указанные выше результаты подтверждают, что выгорание углеродистых отложений на оксиде хрома(П1) происходит после индукционного периода, во время которого разрушаются связи атомов углерода с оксидом и восстановленные ионы хрома окисляются [109]. Длительность индукционного периода уменьшается с увеличением температуры и повышением парциального давления кислорода в смеси и увеличивается с ростом содержания углерода в образцах. Углерод, связанный со структурой оксида, наиболее реакционноспособен и окисляется в первую очередь. [c.46]

    Карбонильная коррозия. Под карбонильной коррозией понимают разрушение металлов и сплавов при воздействии на них в особых условиях оксида углерода. При нормальных условиях оксид углерода по отношению к металлам инертен, но при высоких температурах и давлениях может образовывать со многими металлами легко возгоняющиеся вещества—карбонилы 1Ме-1-лС0—>-Ме(СО) ], которые затем разлагаются на металл и оксид углерода. При более высоких температурах вследствие высокого давления паров разложившегося карбонила действие СО на железо прекращается. Действие СО вызывают коррозию поверхностного слоя металла с разрыхлением на глубину до 5 мм. Изменение структуры металла на некотором расстоянии от поверхности уже не происходит. [c.460]

    Оксид алюминия (III) при обычной и умеренно высоких температурах не восстанавливается до металлического алюминия такими химическими восстановителями как водород, углерод и большинство металлов. В табл. 2.2 приведены значения изобарно-изотермического потенциала оксидов алюминия, водорода, углерода и таких активных металлов как натрий и магний. [c.30]

    Первый закон термохимии может быть использован для определения теплот образования соединений, полученных косвенным путем. Например, оксиды хлора СЬО, СЮа, СЬО не могут быть получены непосредственным взаимодействием хлора с кислородом, но они легко разлагаются на простые вещества, позволяя измерить тепловой эффект реакции разложения. Очевидно, что теплота образования этих оксидов равна тепловому эффекту реакций разложения, взятому с обратным знаком. [c.48]


    При соприкосновении двух поверхностей контакт происходит не по всей площади, а лишь на относительно небольшом числе выступов шероховатостей. В результате скольжения поверхностей друг относительно друга неровности одной поверхности стирают неровности противоположной и образуется гладкий след. Если эта поверхность металлическая, то здесь сразу же адсорбируется газ или происходит ее окисление. Последующие перемещения шероховатостей стирают пленку оксида они могут и механически активировать реакцию адсорбции кислорода на металле и образования оксида, который, в свою очередь, также стирается (рис. 7.20). Это химическая составляющая разрушения при фреттинге. Кроме того, шероховатости вызывают определенный износ, удаляя частички металла. Это механическая составляющая. Оторвавшиеся частицы металла превращаются в оксид, и поверхность металла через некоторое время начинает истираться о движущиеся частицы в большей степени, чем о противоположную поверхность (в результате низкое вначале электрическое сопротивление между поверхностями становится высоким). [c.165]

    Рассматривая структуры оксидов неметаллов, обратим внимание на то, что для реализации координационной структуры при сохранении преимущественно ковалентного взаимодействия необходима заметная доля ионности связи. В противном случае образуются молекулярные структуры. Так, сравнивая между собой структуры высших оксидов углерода и кремния, отметим, что СО2 обладает молекулярной структурой, а Si02 — координационной структурой ковалентного типа. Это обусловлено возрастанием разности ОЭО элементов в оксидах при переходе от углерода к кремнию. Остальные высшие оксиды элементов IVA-группы (СеОг, Sn02, РЬО г) кристаллизуются в структурном типе рутила Ti02, свойственном более ионным соединениям. При переходе к оксидам элементов VA — УПА-гр шп наблюдается увеличение числа молекулярных структур и уменьшение числа ко- [c.266]

    На основании закона Авогадро определить для аммиачмо-воздуплиой смеси, достаточно ли будет содержаться в образовави1емся нитрозном газе кислорода, чтобы обеспечить полноту превращения оксида азота (И) в оксид азота (IV) при охлаждении газа со следующими объемными долями NH3 а) 0,105 б) 0,112 н в) 0,115. Воздух с объемной долей О2 0,209. Принимается, что аммиак окисляется в оксид азота полностью. [c.166]

    Результаты исследования состояния платины в катализаторах, промотированных фтором, методом ИК-спектроскопии адсорбированного оксида углерода приведены на рис.. 2.4, Степень заполнения платины оксидом углерода изменяли путем термодесорбции при различных температурах, Зависимость частоты колебания хемосорбированиого оксида углерода от степени заполнения может быть вызвана двумя причинами взаимным влиянием хемосорбированных частиц оксида углерода и неоднородностью поверхности платины. В области малых заполнений взаимным влиянием хемосорбированных частиц можно пренебречь, и частота колебаний оксида углерода характеризует состояние платины. Полученные данные (рис. 2.4) указывают, что фторирование алюмоплатинового катализатора приводит к существенному сдвигу частоты колебания оксида углерода в высокочастотную область, т. е., что в промотированных фтором образцах платина является более злектрондефицитной, чем в нефторированных. Возможно, фторирование усиливает акцепторные центры носителя, с которыми взаимодействует платина. Повышение частоты колебаний оксида углерода сопровождается явлениями ослабления прочности связи платина - углерод, что выражается в уменьшении температуры десорбции на 100 °С. [c.49]

    Известны два ряда соединений золота, отвечающие степеням окисленности +1 и -f3. Так, золото образует два оксида — оксид эолота ), или закись золота, АигО и оксид золога(И1), или окись золота, AU2O3. Более устойчивы соединения, в которых золото имеет степень окисленности -j-3. [c.580]

    Раньше такое восстановление требовало кипячения в течение 10—17 ч в бензоле, содержащем немного метанола. Авторы предположили, что ОН реагирует с карбонилом железа с образованием [Рез (СО) 12] который в свою очередь протониру-ется, давая [НРез(СО)12] . Ионная пара этого аниона, по-видимому, является истинным восстанавливающим реагентом [547, 548]. В присутствии газообразного оксида углерода выход анилина значительно снижается [1168]. Восстановление ароматических нитросоединений также возможно в бензоле при комнатной температуре и использовании системы Ru3( O)is/12 н. НаОН/ /ТЭБА. В этом случае в атмосфере оксида углерода выходы существенно повышаются [1376]. [c.375]

    Типические элементы образуют оксиды, формулы которых можно предсказать на основании положения элементов в периодической таблице например, элементы третьего периода образуют следующие оксиды НагО, МяО, А12О3, ЗЮз, Р2О5 63 и С12О7. Оксиды элементов, находящихся в левой части таблицы, являются сильными основаниями. Для них характерно наличие больщого отрицательного заряда на атомах кислорода, и по типу связи они принадлежат к ионным соединениям. Температуры плавления этих ионных оксидов, как правило, достигают 2000°С, но многие из них разлагаются уже при более низких температурах. Они реагируют с водой с образованием основных растворов [c.321]

    Основные АлиЬотерные Кислотные оксиды оксиды оксиды [c.44]

    Как видно из приведенных данных, оксиды ванадия и железа проявляют в исследо1 анных условиях наивысшую активность в реакции парционального окисления сероводорода при высокой селективности. В качестве активных компонентов катализатора для окисления сероводорода были выбраны каталитические системы на основе оксидов ванадия и железа. [c.187]

    Подобных примеров очень много. Следует лишь иметь в виду различные химические накладки , усложняющие течение процессов, подобных (XVI), (XVII), (XVIII) и (XIX), например, образование смешанных оксидов (оксиды металлов в присутствии ЗЮг), карбидов (Т1), образование твердых растворов и т. д., —и, как всегда, проблему скорости взаимодействия. [c.278]

    Нормы выбросов оксидов азота в атмосферу, установл енные в таких странах, как США [0,03% (об.)], Франция [0,05% (об.)], Япония [0,02%) (об.)], Великобритания [0,1% (об.)], примерно в 10 раз выше содержания оксидов в выхлопных газах на агрегатах отечественного производства. [c.214]

    Свойства гидроксидов (оксид-гидрокспдов) определяются характером электроположительного элемента. Гидроксиды активных металлов являются основаниями, т. е. акцепторами протонов. По мере уменьшения активности металлов, а особенно при переходе к неметаллическим элементам свойства их гидроксидов (оксид-гидроксидов) непрерывно изменяются происходит переход от типичных оснований к амфотерным соединениям и к кислотам, т. е. донорам протонов. В основных гидроксидах электроположительный элемент с кислородом связан ионной связью, а водород с кислородом — ковалентной. В кислотных гидроксидах, наоборот, связь кислорода с электроположительным элементом ковалентная, а с водородом — нонная или, во всяком случае, сильно полярная. Амфотерные гидроксиды обладают промежуточными свойствами. Изменение состава и характера гидроксидов (и оксид-гидроксидов) элементов можно видеть на примере соединений элементов третьего периода системы Д. И. Менделеева  [c.127]

    Азотная кислота — сильный окислитель. Металлы, за исключением Р1, РЬ, 1г, Аи, переводятся концентрированной азотной кислотой в соответствующие оксиды. Если последние растворимы в азотной кислоте, то образуются нитраты. Железо хорошо растворяется в разбавленной азотной кислоте. Концентрированная азотная кислота образует на поверхности железа тонкий, но плотный слой нерастворимого в концентрированной кислоте оксида, защищающего металл от дальнейшего разъедания. Эта способность железа пассивироваться используется для защиты его от коррозии. Концентрированную азотную кислоту (особенно с добавлением 10% Н2504) перевозят обычно в стальных цистернах. Многие органические вещества (в частности животные и растительные ткани) при действии НМОз разрушаются, а некоторые из них от соприкосновения с очень концентрированной кислотой могут воспламеняться. В лабораторной практике обычно применяется азотная кислота, [c.99]

    Добавки оксида железа используют и для активирования других катализаторов, применяемых для окисления сероводорода в области средних температур. Так, исследование каталитических свойств оксида алюминия в реакции парциального окисления сероводорода в элементную серу показало, что алюмооксидные катализаторы малоактивны, неселективны и быстро дезактивируются в процессе за 5 ч работы активность снижается почти вдвое [26]. Введение в состав оксида железа в количестве 0,5-10% масс, приводит к резкому повышению конверсии сероводорода и повышает стабильность работы катализатора. Максимальная степень превращения сероводорода в элементную серу на алюмооксидном катализаторе, содержащем 0,5% масс, оксида железа, при температуре 320 С составляет 95%. Введение оксида железа в состав титаноксидного катализатора также повышает активность последнего. При содержании оксида железа 0,1% масс, и температуре 285°С конверсия сероводорода составила 99,5% при селективности близкой к 100% [10,27]. Оксид железа входит и в состав других сложных катализаторов окисления сероводорода и органических сернистых соединений [26]. [c.67]

    Эвтектическая смесь оксидов еще больше снижает температуру плавления. Если в нефти, содержащей ванадий, присутствуют соединения серы или натрия, то благодаря катализирующему влиянию V2O5 на реакцию окисления SO в SO3 образуется содержащая Na2S04 и различные оксиды окалина, температура плавления которой всего 500 °С. Положительное действие оказывает добавление в нефть кальциевых и магниевых мыл, порошкообразного доломита или магния — они повышают температуру плавления золы вследствие образования СаО (<пл = 2570 °С) или MgO ( пл =2800°С). Катастрофического окисления можно также избежать, работая при температурах ниже точки плавления оксидов. Сплавы, содержащие большое количество никеля, устойчивее вследствие высокой температуры плавления NiO (1990 °С). [c.201]


Смотреть страницы где упоминается термин оксид ди оксид: [c.311]    [c.163]    [c.28]    [c.440]    [c.171]    [c.70]    [c.36]    [c.573]    [c.445]    [c.171]    [c.438]    [c.551]    [c.248]    [c.367]    [c.68]    [c.214]    [c.96]    [c.196]   
Общая органическая химия Том 8 (1985) -- [ c.145 ]




ПОИСК







© 2025 chem21.info Реклама на сайте