Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочноземельны

    Рассуждая таким образом, можно сказать, что щелочноземельные элементы (магний, кальций, стронций и барий) похожи друг на друга также по этой причине у каждого из них на внешней оболочке по два электрона. На внешних оболочках атомов галогенов (фтора, хлора, брома и иода) по семь электронов, а на внешних оболочках инертных газов (неона, аргона, криптона и ксенона)— по восемь. [c.158]


    К наиболее сильным восстановителям относятся щелочные и щелочноземельные металлы, а также M.g, А1, 2п и другие. Очень сильным восстановителем является АзНз, а также У +, Т1 +, [c.349]

    Влияние существующего в растворе электрического поля на определяемые катионы исключают, добавляя к раствору концентрированный раствор какого-либо электролита, содержащего катион с высоким потенциалом восстановления (обычно раствор соли щелочного или щелочноземельного металла). При этом перенос тока будет происходить практически только за счет движения ионов этого электролита. Определяемые же ионы, поскольку концентрация их гораздо меньше, будут играть Б этом переносе такую ничтожно малую роль, что без заметной ошибки можно считать их появление у катода обусловленным исключительно процессом диффузии из более отдаленных частей раствора. Только пр этом условии можно считать, что высота полярографической, волны пропорциональна концентрации восстанавливающихся на катоде (определяемых) ионов. Такие растворы электролитов, с помощью которых устраняется влияние электрического поля, называются основными растворами или фоном. [c.455]

    Какие преимущества дает электролиз с ртутным катодом Почему на нем возможно выделение даже щелочных и щелочноземельных металлов и при каких условиях оио происходит  [c.457]

    Введение металлов, обладающ,их меньшей электроотрицательностью по сравнению с СиО и поэтому действующих как доноры электронов (щелочные или щелочноземельные металлы), повышает активность и снижает селективность. Электронные акцепторы (С1 , SO , S, Р), напротив, увеличивают селективность и уменьшают активность [74, 75]. [c.97]

    Смешанные проводники — тела, сочетающие электронную и ионную проводимости, например растворы щелочных и щелочноземельных металлов в жидком аммиаке, некоторые твердые соли. Их электропроводность, а также знак температурного коэффициента проводимости зависят от состава проводника и температуры (от относительного вклада электронной и ионной составляющих), изменяясь от значений, характерных для чисто ионных проводников, до значений, присущих металлам. [c.103]

    Подобным образом ведут себя слабые акцепторы электронных пар — катионы щелочных и щелочноземельных металлов. Иными словами, катионы, образующие сильные основания — щелочи. [c.209]

    Указанный случай взаимодействия характерен для щелочных и щелочноземельных металлов. Реакция идет с заметной скоростью, если образующийся в результате реакции гидроксид растворим в воде. Образование же нерастворимого (или малорастворимого) гидроксида на поверхности металла тормозит дальнейшее протекание реакции, например  [c.239]


    Электрохимические методы получения простых веществ. Процессы электрохимического окисления и восстановления осуществляются на электродах при электролизе расплавов или растворов соединений. Электрохимическим (анодным) окислением получают фтор, хлор и кислород. Электрохимическим (катодным) восстановлением расплавов соответствующих соединений получают щелочные и щелочноземельные металлы, алюминий и некоторые другие. [c.245]

    Химическая природа бинарных соединений обусловлена химической природой электроположительного элемента соединения щелочных и щелочноземельных металлов проявляют основные свойства, а [c.251]

    Поэтому по окислительной активности водород существенно уступает галогенам. По этой же причине ясно выраженный ионный характер проявляют лишь гидриды наиболее активных металлов — щелочных и щелочноземельных, например КН и СаНа. [c.276]

    Как фториды и хлориды, бромиды и иодиды могут быть ионными, ионно-ковалентными и ковалентными соединениями. Преимущественно ионными являются бромиды и иодиды щелочных и щелочноземельных металлов, тогда как бромиды и иодиды неметаллических элементов преимущественно ковалентные. В ряду галидов одного и того же элемента с повышением степени его окисления усиливается ковалентный характер связи. [c.300]

    Подобно гидридам, фторидам и хлоридам, бромиды и иодиды в зависимости от природы элемента в положительной степени окисления могу г быть основными (галиды щелочных и щелочноземельных металлов) и кислотными (галиды неметаллических элементов). Примеры бромидов и иодидов разной химической природы и их поведение при гидролизе приведены ниже  [c.301]

    Кислотная природа соединений проявляется также при их взаимодействии с однотипными производными щелочных и щелочноземельных металлов, например  [c.304]

    Вследствие высокой химической активности щелочноземельные металлы хранят под керосином в запаянных сосудах (кальций обычно в плотно закрывающихся металлических банках). [c.480]

    Простые вещества скандия н его аналогов по химической активности уступают лишь щелочным и щелочноземельным металлам. В ряду 5с—V—Ьа—Ас химическая активность заметно возрастает, [c.526]

    По химической активности цинк и его аналоги уступают щелочноземельным металлам. При этом в противоположность подгруппе кальция в подгруппе цинка с ростом атомной массы химическая активность металлов (как и в других подгруппах -элементов, кроме подгруппы скандия) понижается. Об этом, в частности, свидетельствуют AG/ дихлоридов и характер изменения их значений в зависимости от порядкового номера элементов (рис. 247). Об этом же свидетельствуют значения электродных потенциалов металлов цинк и кадмий в ряду напряжений расположены до водорода, ртуть — после. Цинк—химически активный металл, легко растворяется в кислотах и при нагревании в щелочах  [c.632]

    По химической активности лантаноиды, как и Ьа, уступают лишь ш,елочным и щелочноземельным металлам. Компактные металлы, правда, довольно устойчивы к сухому воздуху. Во влажном же воздухе они быстро тускнеют. При нагревании (до 200— 400° С) лантаноиды воспламеняются на воздухе и сгорают с образованием смеси оксидов и нитридов. Церий в порошкообразном состоянии даже пирофорен, т. е. самовоспламеняется на воздухе при обычных условиях. Пирофорность церия и ряда других лантаноидов, используется для получения пирофорных сплавов — кремней зажигалок, трассирующих пуль и др. [c.643]

    ГВ качестве конденсирующих агентов при реакции фенола с ацетоном могут быть использованы и вещества щелочного характера — феноляты щелочных или щелочноземельных металлов . Процесс протекает, однако, при значительно более высоких температурах (160 °С), чем с кислотными катализаторами. Избыток фенола также оказывает благоприятное действие. Катализатор берут в количестве 1—2,5 моль на 1 моль ацетона (более высокое содержание катализатора приводит к увеличению выхода смолообразных побочных продуктов). [c.65]

    В последнее время широкое распространение получили органические реагенты нового типа, носящие общее название комплексонов, наиболее важным из которых является так называемый комплексон III (торговое название двузамещенной натриевой соли этиленднаминтетрауксусной кислоты). Это соединение способно образовывать комплексы с большим числом различных катионов, например с катионами щелочноземельных и многих цветных металлов (Сц2+, Zn2+, N 2+, Со + и др.), с ионами редкоземельных элементов, железа, циркония и т. д. Большим достоинством комп-лексона 1П является то, что в определенных условиях различные катионы, даже имеющие разные заряды, образуют с ним комплексные молекулы или ионы с молекулярным отношением 1 1. Таким образом, ступенчатое протекание реакций, приводящее к нестехио-метричности соотношений между металлом и комплексообразующим реагентом, здесь исключается. [c.315]


    Хелатные полимеры Си, d, Мп и Ni u-Полихелат а-тиоамидов и дитиокарбонат натрия Мп-по лихе лат 5,5 -мети-ленбиссалицилальдегида, Ni- и Мп-бискетонхелаты НВг + соль щелочного или щелочноземельного металла и органической кислоты, например НВг -f 4- бензоат натрия НВг + бензойная кислота Этилкапронат натрпя и другие Na-соли разветвленных жирных кислот Мононатриезая соль дикар-боновой кислоты, например адипинат натрия Си- и Ag-солп органических кислот, напрпмер ацетат, бензоат, стеарат или нафтенат серебра, формиат или ацетат меди [c.276]

    Роль комплексообразователя может играть любой элемент периодической системы. В соответствии со своей химической природой неметаллические элементы обычно дают анионные комплексы, в которых роль лигандов играют атомы наиболее электроотрицательных элементов, например ИРРеК Кз(Р04 , KslPS I Что же касается типичных металлических элементов (щелочных и щелочноземельных ме-тал.лов), то способность к образованию комплексных соединеиий с не рганическими лигандами у них выражена слабо. Имеющиеся [c.95]

    По типу химической связи между их внутренней и внешней сферами эти соединения могут быть ионными, ионно-ковалентными и ковалентными. Если анионный комплекс достаточно устойчив, то рассматриваемые соединения по основно-кислотным свойствам подобны бинарным. Так, производные щелочных и щелочноземельных металлов являются основными, а производные неметаллических элементов — кислотными. Сказанное подтверждается их сольволизом и реакциями взаимодействия производных анионных комплексов различной основнокислотной природы, например  [c.256]

    Из производных оксохлорат (1)-аниона ( 10I называемых гипохлоритами, относительно устойчивы соединения щелочных и щелочноземельных металлов. Гипохлориты этих элементов — соли, растворимые в воде. Их получают, пропуская хлор в охлаждаемые растворы щелочей  [c.290]

    Производные СЮ -аниона называются хлоритами. Хлориты щелочных и щелочноземельных металлов представляют собой белые кристаллические вещества. Диоксохлорат (III) водорода НСЮд в свободном состоянии не получен. Даже в водном растворе H IO2 быстро разлагается. Раствор H IO2 представляет собой кислоту средней силы (Л ониз = ЬЮ ), называемой хлористой. [c.291]

    Г идридобораты известны для многих элементов. Тетрагид-ридобораты щелочных и щелочноземельных металлов являются преимущественно ионными соединениями, т. е. типичными солями. В твердом состоянии они вполне устойчивы (т. разл. 250—500°С). В практике чаще всего используется Ыа[ВН4] — бесцветная соль, хорошо растворимая в воде. При обычных температурах гидролизуется очень медленно. [c.444]

    В противоположность 1ЮННЫМ ковалентные тетрагидридобораты типа А1(ВН4)з (т. пл. —64,5°С, т. кип. 44,5°С), Ве(ВН4)2 (т. возг. 91"С) летучи, легкоплавки. В этих гидридоборатах (поскольку имеется дефицит электронов) связь между внешней и внутренней сферами осуществляется за счет трехцентровых связей. Таким образом, эти соединения являются смешанными гидридами. В гидридоборатах же щелочных и щелочноземельных металлов (низкие энергии ионизации) дефицит электронов устраняется за счет перехода электронов атома 11еталла к радикалу ВН4, т. е. в этом случае связь между внешней и знутренней сферами становится преимущественно ионной  [c.444]

    Кальций, стронций и барий энергично взаимодействуют с активными неметаллами уже при обычных условиях. С менее активными (такими, как азот, водород, углерод, кремний и др.) и елочноземельные металлы реагируют при более или менее сильном нагревании. Реакции сопровождаются выделением большого количества тепла. Активность кзаимодействия в ряду Са — Sr — Ва возрастает. При нагревании щелочноземельные металлы взаимодействуют с другими металлами, образуя сплавы, в состав которых входят различные интерметаллические соединения. [c.480]

    В противоположность щелочноземельным металлам цинк и кадмий в свободном состоянии можно получить химическим восстановлением или электролизом растворов их соединений. Пирометаллургическое полу1ение Zn и d из их сернистых руд проводится в две стадии. Сначала руды подвергаются окислительному обжигу, затем полученные оксиды восстанавливают углем  [c.633]

    Гидриды ЭНз построены по типу флюорита (см. рис. 70, а) и име-ь)Т солеобразный характер. Они в большей мере напоминают ионные гидриды щелочноземельных металлов, а с гидридами d-элементов гмеют мало общего. Водородные соединения лантаноидов — химически весьма активные вещества, очень энергично взаимодействуют ( водой, кислородом, галогенами и другими окислителями. Особо реакционноспособны соединения типа ЭН3. [c.646]

    У тцелочных и щелочноземельных металлов (за исключением Ве) окисная пленка пориста и поэтому не может оказывать защитного действия ионы металла имеют меиьший объем, чем атомы чистого металла. [c.551]

    Это последнее уравнение, согласно которому рост окисной пленки во времени происходит по параболическому закону, является типичным для окисления большинства металлов, за исключением щелочных и щелочноземельных металлов [54, 55]. Более четкая модель процесса окисления, включающая перемещение О и М ионов вместе с электронами, а также учитывающая дефекты решетки, была сформулирована Вагнером [56] (см. также [57]). Следует также отметить, что было сделано много попыток связать сложную константу скорости в уравнении (XVII.7.8) со свойствами различных компонентов системы [58]. Эта задача усложняется влиянием заряда, которое проявляется в ионных средах. В случае очень тонких окисных пленок между поверхностями раздела будет существовать электростатическое взаимодействие [59]. Качественно рассмотренные модели, по-видимому, достаточно хорошо согласуются с экспериментом в то же время многие черты процесс окисления продолжают оставаться невыясненными.  [c.552]

    По химической природе адсорбенты типа молеку.лярных сит относятся к категории естественных или синтетических цеолито-вых минералов. Кристаллы этих адсорбентов состоят из перемежающихся групп 8104 и АЮ4, между которыми расположены ионы щелочных или щелочноземельных металлов. Размеры нор молекулярных сит зависят от природы этих ионов, их положения в кристалле, а также от условий кристаллизации. Из молекулярных сит естественного происхождения известен минерал шаба-зит. Шабазит способен избирательно адсорбировать к-алканы до С3—Са, а по некоторым сведениям — и до С, [79]. [c.164]

    Рисц с сотрудниками [68] указывают на преимущества катализатора состава 75% AI2O3 — 25% Сг Од, приготовленного путем совместного осаждения, перед катализаторами, приготовленными осаждением GrjOj на активированную окись алюминия. Равновесные выходы в этом случае достигались нри 500° С. Многими исследователями [11, 23, 29, 59] описывается нрименение щелочных или щелочноземельных добавок к катализатору для уменьшения коксообразования. Наиболее часто указывается на добавление с этой целью 1% KgO. Избирательность алюмохромовых катализаторов повышается также путем прокаливания их при высоких температургах для уменьшения коксообразования. [c.196]

    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]

    Гидроксиды алюминия получают разными способами разложением изопропоксиалюминия,осаждением из растворов нитрата или хлорида алюминия аммиаком или из алюмината натрия азотной кислотой. Первый способ обеспечивает максимальную чистоту гидроксида алюминия по содержанию щелочных и щелочноземельных металлов и железа. [c.74]

    Реакцию проводят в водной среде при 50 °С в присутствии катализаторов — минеральных солей щелочных или щелочноземельных металлов (Na l, a la, K l, NagSOi и т. д.) . После отгонки непрореагировавшей окиси этилена выкристаллизовавшийся продукт промывают водой и высушивают выход теоретический т. пл. 112— 112,5 °С. Синтез можно проводить и в безводной среде . В этом случае кристаллизация продукта происходит при выливании реакционной массы в воду выход 96%. [c.33]

    Эта реакция до 280 С протекает очень медленно. Небольшое ускоряющее действие оказывают кислотные катализаторы, однако наиболее эффективны вещества основного характера щелочные и щелочноземельные металлы и их окислы, а также гидриды, амиды, окислы других металлов (цинка, свинца, сурьмы) Условия проведения переэтерификации следующие . Вследствие того что переэтерификация является равновесной реакцией, для получения высокомолекулярного поликарбоната с высокими выходами необходимо удалять образующийся фенол из реакционной смеси. Реакцию проводят при 150—300 X в вакууме. Основное количество фенола удаляется до 210 °С и при остаточном давлении 20 мм рт. ст. Затем давление понижают до 0,2 мм рт. ст., а температуру повышают до 280 X. При этом удаляются остатки фенола, а образовавшийся на первой стадии низкомолекулярный поликарбонат с концевыми фенилкарбонатными группами превращается в высокомолекулярный поликарбонат  [c.45]

    Описан синтез дифенилолпропана с использованием в качестве катализатора комплексного соединения ацетона или фенола с ВРз и в присутствии фторидов щелочноземельных металлов, например СаРд. В сочетании с хлористым водородом катализаторами могут быть ВРз, А1С1з, ЗпС] , 5ЬС15, ЗпР , 5ЬРз. Выход дифенилолпропана 88—90%. [c.64]


Смотреть страницы где упоминается термин Щелочноземельны: [c.116]    [c.104]    [c.149]    [c.273]    [c.275]    [c.87]    [c.252]    [c.301]    [c.482]    [c.177]    [c.130]    [c.191]   
Экспериментальные методы в неорганической химии (1965) -- [ c.569 ]




ПОИСК







© 2025 chem21.info Реклама на сайте