Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотоны длина волны

    Рассчитайте энергию фотона, длина волны которого 5-10- м. [c.17]

    Для оценки порядка величины энергии, перенесенной в результате этого процесса от твердого тела в газовую фазу, необходимо знать соответствующие спектры поглощения твердого тела и газа для данной области энергии, а также спектры испускания твердого тела при тех же энергиях. Спектры поглощения большинства газов обычно хорошо известны в видимой и в близкой ультрафиолетовой областях. При этих же энергиях число известных спектров для твердых тел гораздо более ограниченно, причем из них детальнее изучены галогениды щелочных металлов. Для длин волн короче 2000 А сведений о спектрах поглощения газов сравнительно немного, а для твердых тел их совсем мало. Тем не менее величины коэффициентов поглощения таковы, что слой твердого тела толщиной от десятых микрона до нескольких микрон вдвое уменьшает интенсивность проходящего света. Спектры испускания облученных твердых тел практически неизвестны. Этим объясняется тот факт, что до настоящего времени не приводилось экспериментальных доказательств в поддержку гипотезы о переносе энергии путем избирательного поглощения фотонов. Наконец, нужно отметить, что фотоны, длины волн которых отвечают этому диапазону энергий, представляют собой частицы, которые могут избирательно поглощаться указанные выше явления совсем не наблюдаются для других видов радиации, рассмотренных в этой статье. [c.239]


    Известно, что при аннигиляции электрона и позитрона с образованием одного фотона длина волны фотона равна 0,0121 А, а в случае образования двух фотонов с равной энергией они обладают расчетной длиной волны 0,0242 А. (Фотоны с такой длиной волны наблюдаются при аннигиляции позитронов в присутствии обычного вещества, в котором содержатся электроны.) Проверьте значения этих длин волп, используя уравнение Эйнштейна, определяющего соотношение между массой и энергией. [c.558]

    Фотоны (длина волны А) [c.520]

    Связь Энергия связи, Энергия фотона, Длина волны. [c.17]

    Коэффициент поглои ения света. Полупроводники, как и металлы, сильно поглощают свет в видимой области спектра и имеют здесь большой коэффициент поглощения. Для чистых полупроводников при определенной длине волны падающего света коэффициент поглощения резко убывает, и материал становится прозрачным со стороны более длинных волн. Этот участок быстрого спада поглощения называется краем собственного поглощения. Присутствие в полупроводнике большого количества примесей делают его непрозрачным по всей области спектра частот — от ультрафиолетовой вплоть до радиочастот. Если частота падающего света такова, что осуществляются переходы электронов из валентной зоны в зону проводимости, то для данной области частот будет наблюдаться большой рост поглощения. Собственное поглощение и обусловлено переходами электронов из валентной зоны в зону проводимости поглощением фотона. Длина волны и частота v , соответствующие краю собственного поглощения, приближенно определяются условиями [c.53]

    Рассмотренные эффекты взаимодействия рентгеновского и гам-ма-излучений с веществом могут идти независимо и одновременно. Доля того или иного эффекта в общей картине взаимодействия зависит от энергии фотона (длины волны излучения) и порядкового номера вещества. [c.243]

    Фотосенсибилизация. Когда фотохимические реакции нельзя инициировать непосредственно светом, так как вещество не поглощает волн доступной длины, можно инициировать реакцию, используя вещества, способные поглощать свет и передавать энергию реагентам. Такой процесс известен как фотосенсибилизация очень эффективным сенсибилизатором является ртуть. Атомы ртути сильно поглощают излучение, соответствующее длинам волн 1849 и 2537 Л, которое легко получить с высокой интенсивностью в ртутных лампах. Полученные таким путем возбужденные атомы ртути могут передавать свою энергию и осуществлять сенсибилизированную реакцию (1 фотон при 2537 А равен 112 ккал/моль, а при 1849 А —154 ккал/моль). Таким путем можно получать атомы Н из Нг [71—74] и углеводородов [4] и зарождать цепные реакции при температурах, при которых обычное зарождение цепей невозможно. Подобные исследования дали очень важные сведения о кинетической природе радикалов. [c.101]


    Пример I. Вычислить массу фотона, отвечающего длине волны 589 - 10 м. [c.39]

    Торможение электронов на аноде рентгеновской трубки может происходить по-разному. одни из них тормозятся мгновенно на самой поверхности анода, что соответствует фотону максимальной величины (т. е. вычисленному по уравнению (IV. 1)1 другие, проникая в глубь анода, постепенно теряют свою энергию. Следовательно, при торможении электронов возникнут фотоны самой разнообразной энергии, а так как количество их, излучаемое в единицу времени, очень велико, то тормозной спектр будет состоять из непрерывного ряда длин волн с резкой границей в коротковолновой части. Характер распределения энергии в спектре торможения при различных напряжениях показан на рис. 56. Тормозное рентгеновское излучение называют сплошным или белым по аналогии с видимым светом. [c.107]

    К пониманию этого принципа можно прийти, рассматривая определение положения частицы. Если частица велика, можно прикоснуться к ней, не внеся серьезных изменений в ее состояние. Если же частица мала, то более осторожным способом установления ее положения могло бы служить освещение этой частицы светом и наблюдение отраженных от нее лучей. Однако свет обладает корпускулярными свойствами-его можно рассматривать как поток фотонов-частиц, обладающих энергией Е = / у. Освещая какой-либо предмет, мы посылаем на него поток энергии. Если это большой предмет, он нагревается если же объект достаточно мал, под действием света он будет отталкиваться назад и его импульс станет неопределенным. Минимальное воздействие, какое можно оказать на объект при измерении его положения,-это его освещение одним фотоном и наблюдение отраженного фотона. Но тут мы сталкиваемся со следующим противоречием. Точность изображения объекта зависит от того, насколько короткая длина волны у света, используемого для наблюдения (чем короче длина волны, тем точнее изображение объекта). Поскольку нежелательно изменять импульс частицы, приходится использовать фотоны с малой энергией. Однако длина волны фотона с низкой энергией оказывается настолько большой, что положение частицы становится неопределенным. И наоборот, если мы пытаемся поточнее определить положение частицы, пользуясь для этого коротковолновым фотоном, то такой фотон обладает большой энергией и отталкивает частицу, делая неопределенным ее импульс (рис. 8-17). Можно поставить эксперимент, позволяющий получить [c.358]

    Вычислите длину волны фотона с частотой 1,2 -10 Гц. Выразите энергию этого фотона в джоулях. Какова его энергия в килоджоулях на моль Как обычно называется такое излучение  [c.381]

    Рентгеновские лучи обычно имеют длину волны от 1 до 10 А. Вычислите энергию фотонов с длиной волны 2 А, выразив ее в джоулях на фотон. Выразите ее в килоджоулях на моль и сравните с энергией простой углерод-углеродной связи, равной 347 кДж моль. Могут ли рентгеновские лучи вызывать химические реакции  [c.381]

    Вычислите энергию фотонов, соответствующих радиоволнам на частоте 1000 килогерц (1 кГц = 10 Гц), выразив ее в джоулях на фотон и килоджоулях на моль. Какова длина волны таких фотонов Как соотносится их энергия с энергией простой углерод-углеродной связи Могут ли радиоволны вызывать химические реакции  [c.381]

    Какова длина волны фотонов с энергией 347 кДж моль " Как называется излучение с такой энергией (См. рис. 8-5,а.) [c.381]

    Вычислите длину волны фотона видимого света с частотой [c.381]

    Чтобы фотон, ударяющийся о поверхность металла, мог выбить из него электрон, он должен обладать энергией, превышающей некоторый минимум. Эта минимальная, или пороговая, энергия называется работой выхода электрона из металла. Если падающий фотон имеет большую энергию, ее избыток превращается в кинетическую энергию выбитого фотона. Пороговая длина волны фотоэлектрической эмиссии из Li, выше которой фотоэффект не происходит, равна 5200 А. Вычислите скорость электронов, испускаемых литием при его облучении светом с длиной волны 3600 А. [c.381]

    Когда два ядра Н и два нейтрона соединяются с образованием Не, масса полученного ядра гелия не совпадает с суммой масс реагирующих частиц. Вычислите энергию (в джоулях на моль атомов гелия), эквивалентную изменению массы в процессе реакции. Если бы соответ- ствующая образованию одного атома гелия энергия высвобождалась в виде одного фотона, какую длину волны он должен был бы иметь Как эта длина волны соотносится с радиусом ядра гелия  [c.438]

    При столкновении электрона и позитрона происходит их аннигиляция с образованием массы фотонов равной энергии. Какова длина волны этих фотонов  [c.438]

    Для фотонного излучения с энергиями частиц более 1 МэВ, т.е. при энергии большей, чем энергия связи атомных электронов с ядром, наблюдается комптоновский эффект. В этом процессе фотоны как бы упруго сталкиваются со свободными или слабо связанными электронами, передавая им часть своей энергии и импульса. Изменение длины волны фотона при рассеянии на угол О равно [c.44]


    Рентгеновские лучи и у-лучи представляют собой электромагнитное излучение с очень малыми длинами волн они относятся к классу частиц фотонов и имеют нулевую массу покоя, в отличие от корпускулярных излучений. [c.101]

    В соответствии с законом эквивалентности Штарка-Эйнштейна, поглощаемый фотон вызывает фотохимическое возбуждение одной молекулы. Количественной мерой превращения служит квантовый выход реакции, равный отношению числа частиц, претерпевших превращение в результате фотохимической реакции, к числу поглощенных фотонов. В предельном случае для первичных процессов выход должен равняться единице, в экспериментах, в зависимости от длины волны, интенсивности света и температуры и типа вещества, выход может принимать значения от 10 3 до 10. Так как энергия активации химических реакций лежит в пределах 40-420 кДж/моль, можно сделать вывод (сравнивая ее с энергией одного моля фотонов, равной Nab-/1 )0 действии на реакции видимых, ультрафиолетовых и рентгеновских лучей. [c.177]

    Длина волны, нм Доля разложившегося оксалата Число разложившихся молекул-10" Число поглощенных фотонов-10" " [c.390]

    В табл. 7 длина волны света сопоставлена с энергией фотона. [c.133]

Таблица 7 Длины волн, волновые числа и энергии фотонов Таблица 7 <a href="/info/2957">Длины волн</a>, <a href="/info/4688">волновые числа</a> и энергии фотонов
    V - длина волны поглощаемого фотона, с - скорость света. [c.42]

    Излучение, связанное с возбуждением атомов и ионов при температурах до 6000 К, относится к области светового и ближнего инфракрасного диапазонов длин волн. Это излучение носит дискретный характер и возникает при соударениях, когда при столкновении свободного электрона с атомом или ионом получаемая последними энергия недостаточна для ионизации, но возбуждает атом или ион. Последнее связано с кратковременным переходом электрона соответствующего атома или иона на внешнюю орбиту, В момент возвращения указанного электрона на прежнюю орбиту эквивалентное количество энергии излучается в виде фотона. [c.233]

    Электронное возбуждение полимерной сетки может быть вызвано электромагнитным излучением (свет, ультрафиолетовое излучение, -излучение) или облучением частицами. Для передачи энергии соударения частиц или кванта излучения электрону необходимо, чтобы энергия оказалась достаточной для перехода последнего в возбужденное состояние н чтобы существовал механизм взаимодействия. При облучении светом в видимой части спектра фотон, скажем, длиной волны 330 нм обладает достаточной энергией для разрыва С—С-связи.. Однако фотон не будет поглощаться алканами, и в них нет электронных состояний с такой же или меньшей энергией возбуждения. Для эффективного разрыва связей фотон должен поглощаться и взаимодействовать с электроном связи. Подобное взаимодействие происходит либо непосредственно, либо косвенно с помощью механизмов переноса энергии путем диффузии экситона, одноступенчатой передачи или поглощения флюоресцентного света, испускаемого той же самой или другой (примесной) молекулой [11]. Природа и последовательность этих важных процессов, которые определяют фотохимическую стабильность (или нестабильность) полимеров, не будут здесь подробно рассматриваться. Интересно, однако, определить уровни энергии, на которых начинается возбуждение электронов или ионизация молекул, и изменения энергии связи, вызванные в свою очередь возбуждением или ионизацией. [c.109]

    Отсюда видно, что краситель поглощает электромагнитное излучение, кванты которого — фотоны — несут энергию, по меньшей мере равную Ае. Длину волны этого излучения можно определить, пользуясь известным соотношением  [c.94]

    Ж. Фотохимические методы. КвантовыЁ выход. Закон фотохимической эквивалентности Эйнштейна гласит, что свет поглощается молекулами отдельными порциями, причем одна молекула может поглотить в один акт только один квант. Путем измерения интенсивности света и длины волны можно количественно определить число фотонов света, поглощенных на протяжении реакции. Данные анализа продуктов такой реакции позволяют вычислить [c.100]

    ЛИШЬ уменьшает общее число фотонов. По мере увеличения энергии падающих фотонов существенную роль начинает играть эффект Комптона. Фотон сталкивается с атомным электроном и претерпевает упругое рассеяние, при этом энергия падающего кванта распределяется между электроном отдачи и фотоном рассеяния. Возникающий электрон отдачи в свою очередь вызывает ионизацию вещества. В случае эффекта Комптона общее число фотонов остается неизменным, хотя энергия их уменьшается (увеличивается длина волны X) и, кроме того, изменяется направление их движения. Эти рассеянные фотоны также могут вызывать чонизацию вещества. Вероятность комп-тоновского взаимодействия зависит от числа электронов, приходящихся на единицу площади поперечного сечения вещества. [c.260]

    Е5ычислить массу фотона., соответствующую. пинии серии Бальмера, если отвечающая ей длина волны 656,3 10 м. [c.39]

    Длины волн линий Н и серии Бальмера соответственно равны 6 )63 10 " и 4102 10 " м.Во сколько раз масса одного фотона (какого) больще массы дру10[0  [c.39]

    Квантование энергии. Электромагнитные волны и скорость света, длина волны, частота и волновое число. Электромагнитный спектр. Излучение абсолютно черного тела. Кванты и постоянная Планка. Фотоэлектрический эффект и фотоны. Спектры поглощения и испускания. Серии Лаймана, Баль.мера и Пашсна уравнение Рндберга. [c.328]

Рис. 8-17. Положение электрона в фиксированный момент времени может быть определено е помощью супермикроскопа , в котором используется свет малой длины волны X (рентгеновские или гамма-лучи). Однако фотоны света с малой длиной волны X обладают большой энергией Рис. 8-17. <a href="/info/129236">Положение электрона</a> в фиксированный момент времени может <a href="/info/1435392">быть определено</a> е помощью супермикроскопа , в <a href="/info/1768031">котором используется</a> <a href="/info/1499813">свет малой</a> <a href="/info/2957">длины волны</a> X (рентгеновские или <a href="/info/16137">гамма-лучи</a>). Однако <a href="/info/1169862">фотоны света</a> с малой <a href="/info/2957">длиной волны</a> X обладают большой энергией
    Радиоволны, инфракрасный, видимый и ультрафиолетовый свет, рентгеновские лучи и гамма-излучение представляют собой электромагнитные волны с различной длиной волны. Скорость света, с = 2,9979-10 ° см с , связана с его длиной волны X и частотой V соотношением с = Ху. Волновое число у-это величина, обратная длине волны, V = 1/Х. Все нагретые тела излучают энергию (излучатель с идеальными свойствами дает излучение абсолютно черного тела). Планк выдвинул предположение, что энергия электромагнитного излучения квантована. Энергия кванта электромагнитного излучения пропорциональна его частоте, Е = км, где / -постоянная Планка, равная 6,6262 10 Дж с. Выбивание электронов с поверхности металла под действием света называется фотоэлектрическим эффектом. Квант света называется фотоном. Энергия фотона равна /IV, где V-частота электромагнитной волны. Зависимость поглошения света атомом или молекулой от длины волны, частоты или волнового числа представляет собой спектр поглощения. Соответствуюшая зависимость испускания света атомом или молекулой является спектром испускания. Спектр испускания атомарного водорода состоит из нескольких серий линий. Положения всех этих линий точно определяются одним общим соотношением-уравнением Ридберга [c.375]

    В 1900 г. Виллард нашел третью компоненту излучения, испускаемого радиоактивными веществами, так называемые улучи. Эти лучи испускаются атомными ядрами в результате естествейных или искусственных превращений или вследствие торможения заряженных частиц, аннигиляции пар частиц и распадов частиц. ДлинЬ волн у-лучей большинства ядер, лежит в пределах от 0,0001 до 0,1 нм. у-Лучис энергией до 100 кэВ (мягкие у-лучи) ничем кроме своего ядерного происхождения не отличаются от характеристических рентгеновских лучей. Поэтому часто термин "ii-лучи применяют для обозначения электромагнитного излучения любой природы, если его энергия больше 100 кэВ. Фотоны, возт кающие в процессах аннигиляции и распадов, называют v-квантами. [c.102]

    В фотохимических реакциях, т. е. реакциях, идущих под дсйстбисм спета, главным источником активации молекул реагирующих веществ является световая энергия. Рассматривая поглощение света как взаимодсйстЕис фотонов с молекулами поглощающего вещества и приняв за меру интенсивности света данной длины волны число соответствующих фотонов ослабление света в поглощающем слое толщины х можно выразить уравнением [c.156]

    Интенсивность спектральной линии возрастает пропорционально концентрации невозбужденных атомов в плазме А о, а следовательно и концентрации элемента в пробе только при малых значениях этих величин. При более высоких концентрациях атомов зависимость интенсивности от N0 ослабляется вследствие эффекта поглощения плазмой излученных фогоно.ч (самопоглощение). Влияние самопоглощения наиболее выражено для резонансных линий, так как в этом случае фотоны поглощаются атомами, находящимися в основном состоянии, т. е. преобладающими в плазме. При очень высоких концентрациях элемента и, соответственно, высоком самопоглощении интенсивность спектральной линии достигает максимума, не зависит от концентрации и равна интенсивности излучения абсолютно черного тела для данной температуры в данном спектральном интервале длин волн. [c.11]

    Для многих технических целей поверхности с большой точностью могут рассматриваться как серые. Но свойства многих поверхностей отклоняются от описанных выше для различных длин волн вследствие резонансных эффектов, которые аналогичны явлениям, связанным с полосами излучения в газе. Кроме того, излучательная способность меняется в зависимости от направления излучения. По. этой причине приходится иногда определять интегральную излучательную способность (все направления, все длины волн), нормальную полную излучательную способность (все длины волн, но только нормальное к поверхности направление) и монохроматическую, или спектральную, иа-лучательную способность (ej, для данной длины волны). На рис. 2 представлены типичные зависимости излучательной способности от длины волны. Взаимодействие между тепловыми колебаниями и фотонами не зависит от направления переноса энергии, т. е. любой процесс, приводящий к излучениЕо электромагнитной волны, может протекать и в противоположном направлении, приводя к поглощению точно такой же волны. По этой причине все излучение, падающее на абсолютно черное тело, будет им поглощаться. Реальные поверхности, однако, поглощают лишь часть падающего на них излучения, отражая остальное, причем отношение поглощенной энергии к полной падающей энергии Е( определяется как поглощательная способность a- EJEf [c.193]

    Микроволновая спектроскопия. В микроволновой области фотоны имеют длины волн от 30 до 0,06 см (V от ЫО до 5-10 1 секг ) и соответственно энергии — от 4 до 2000 дж1моль. В этой области спектра энергия фотона мала, поэтому возникают изменения только во вращательном движении, что дает возможность вычислять моменты инерции молекул. Поглощение энергии происходит при определенных частотах, которые и используются для определения моментов инерции газообразных молекул. [c.67]

    Рамановское испускание растворителя (комбинационное рассеяние). При комбинационном рассеянии света длина волны отличается от длины волны возбуждающего света. Это происходит потому, что при рассеянии света часть энергии пучка может перейти в энергию колебаний или, если облучаемая молекула находится в колебательно-возбужденном состоянии, то она может отдать колебательную энергию фотону. Идентифицировать полосы комбинационного рассеяния нетрудно, поскольку при изменении длины волпы возбуждающего света они всегда сдвинуты на одно и то же расстояние (в щкале волновых чисел) от линии возбуждения. Для уменьпюния рамаиовского рассеяния используют отсекающие фильтры или иа пути пучка флуоресценции помещают поляризатор, что уменьшает интенсивность рамановских полос, поскольку рамановское испускание достаточно поляризовано. [c.73]

    Согласно теории столкновений релятивистских частиц, при 1 = = у-фотоио.м передается электрону почти вся энергия падающего фотона [8], где = 0,38 Ю см - комптогювская длина волны [c.17]

    Таким образом, с увеличением главного квантового числа атома водорода, частота колебаний возбужденного электрона снижается, длина волны растет, а энергия колебаний также снижается. Отметим, что в спектральной серии атома водорода при переходе электрона с I орбиты на II электрон поглощает фотон с длиной волны 1215,18 10 см и при переходе со II орбиты на III орбиталь электрон поглощает фотон с длиной волны 6562,79 - 10 см и т.д. [1]. Следователыю, частота фотона, поглощаемого электроном равна [1]  [c.42]


Смотреть страницы где упоминается термин Фотоны длина волны: [c.7]    [c.180]    [c.102]    [c.10]    [c.325]    [c.26]    [c.136]   
Общая химия (1964) -- [ c.560 ]




ПОИСК





Смотрите так же термины и статьи:

Газ фотонный

Длина волны

Фотоны



© 2025 chem21.info Реклама на сайте