Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод продукты присоединения

    Реакции нуклеофильного присоединения альдегидов и несимметричных кетонов приводят к образованию соединений, содержащих хиральный атом углерода. Карбонильная группа (С=0) имеет плоское строение, она доступна для атаки сверху и снизу в направлении, перпендикулярном ее плоскости. Если альдегид (кетон) и нуклеофильный реагент не имеют хиральных атомов углерода, продукт присоединения получают в виде рацемической модификации. [c.127]


    При вовлечении в реакцию оксосинтеза разветвленных олефинов не с концевой двойной связью получаются продукты реакции почти такие же, как и те, которые дают изомерные им олефины с двойной связью на конце. Так, сообщается [9 , что каждый из трех изомерных метилбутенов (а, б, в) дает почти одинаковые смеси, которые почти полностью состоят из продуктов присоединения углерода к двум конечным атомам углерода  [c.294]

    Основные типы реакций гидрирования. Гидрирование углеводородов. При гидрировании может происходить разрыв связей между атомами углерода с присоединением водорода к освободившейся связи в случае ациклических соединений получаются продукты с меньшим молекулярным весом  [c.230]

    Если углеродные атомы, образующие двойную связь, соединены с разным числом атомов водорода, то, согласно правилу Марковникова, атом галоида галоидоводородной кислоты присоединяется преимущественно к атому углерода, связанному с меньшим числом атомов водорода изомерный продукт присоединения образуется обычно лишь в небольшом количестве. [c.64]

    Все образующиеся вещества можно формально рассматривать как продукты присоединения по кратной углерод-углерод-ной связи кетена. Однако, если принять во внимание, что для [c.92]

    В 1953 г. Берг и Паттерсон, исследуя проводимость растворов двуокиси углерода и аммиака в воде в поле высокого напряжения, показали, что в растворах сначала образуются продукты присоединения СО и КНз с водой, а затем эти продукты диссоциируют на ионы. По отношению к аммиаку эти авторы приняли следующую схему  [c.299]

    Под ero влиянием поляризуется п-связь и создаются условия для присоединения атомов брома к каждому атому углерода (электрофильное присоединение). Образуется конечный продукт — дибромэтан  [c.296]

    Из химических реакций, применяемых для количественного определения карбонильных групп (в альдегидах и кетонах), наиболее широко используются три метода 1) присоединение по месту двойной связи между кислородом и углеродом 2) замещение, ведущее к образованию оксимов 3) окисление. Из многочисленных продуктов присоединения к карбонильной группе особенно важное значение имеют гидросульфитные соединения, так как на их образовании основано определение многих альдегидов и некоторых кетонов. Под действием гидросульфита образуются устойчивые по отношению к окислителям а-оксисульфокислоты. Они в водном растворе частично разлагаются на компоненты. Если константа скорости разложения достаточно мала и скорость установления равновесия достаточно велика, то реакция пригодна для объемного анализа данного карбонильного соединения путем иодометрического определения количества непрореагировавшего сульфита. [c.53]


    Ароматические альдегиды дают большинство обычных продуктов присоединения и конденсации алифатических альдегидов (разд. 7.1.4, А). Однако, не имея водородного атома у углерода, соседнего с карбонильной группой, эти альдегиды не образуют таутомерных форм (разд. 7.1.4, В) и в сильнощелочных условиях вступают в реакцию Канниццаро (разд. 7.1.4, В)  [c.138]

    Этот процесс может быть также использован для синтеза высших непредельных дикарбоновых кислот, содержащих 14 и 18 атомов углерода, при электролизе монометиладипината в присутствии дивинила. Механизм процессов анодной конденсации на основе синтеза Кольбе заключается, по-видимому, в разряде аниона карбоновой кислоты или моноэфира с декарбоксилированием и адсорбцией образовавшегося радикала на поверхности анода. Димеризация радикалов и продуктов присоединения дивинила в положении 1,4 приводит к образованию указанных продуктов  [c.454]

    Важными продуктами присоединения оксида углерода являются карбонилы металлов, обобщенная формула которых Ме г(СО)у, например Сг(СО)е, Мп2(С0)ю, Fe( 0)5, Рег(С0)9, Со2(СО)а, Ni( 0)4. Карбонилы переходных металлов — жидкости или летучие твердые вещества. Они хорошо растворяются в органических растворителях, отличаются химической устойчивостью. Все они ядовиты, но их токсическое действие не кумулятивно. При нагревании выше определенной температуры карбонилы разлагаются с выделением оксида углерода и металла в мелкодисперсном состоянии. В химическом отношении карбонилы представляют собой комплексные соединения, в которых металлический элемент функционирует в нулевой степени окисления, а в качестве лигандов выступают молекулы оксида углерода. Их донорная активность обусловлена наличием неподеленной электронной пары атома углерода. [c.361]

    Если исходные соединения содержат хиральный атом углерода, продукт присоединения образуется в виде смеси диастереомеров, в которой может преобладать один из них (для примера см. ниже реакции с С-нуклеофиами). [c.127]

    Химия алкенов в основном связана с взаимодействием элек-трофильных реагентов с двойной углерод-углеродной связью. Мехаиизм таких реакций рассматривается в книге Сайкса (с. 176—187) и не будет обсуждаться в данной главе. Тем не менее необходимо упомянуть, что присоединение электрофилов к несимметричным алкенам проходит через более стабильный карбениевый ион. Это в свою очередь приводит к образованию продукта, в котором положительно заряженная часть реагента оказывается связанной с менее замещенным атомом углерода (продукт присоединения по правилу Марков икова). На схеме 2.1 приведены реакции присоединения а примере пропена. Более подробное описание отдельных реакций можно найти в последующих главах каталитическое гидрирование — в гл. 8, окисление — в гл. 9, гидроборирование — в гл. 11. Здесь же мы приведем лишь некоторые комментарии по синтетическому использованию остальных реакций, приведенных на схеме 2.1. [c.14]

    Более целесообразно применять для поглощения окиси угле[5ода суспензию закиси меди и р-нафтола в серной кислоте . Образующийся в этом случае после поглощения окиси углерода продукт присоединения uS04-2 0 очень устойчив и не, разлагается даже при повышении температуры до 100° С. Суспензия может быть использована в течение длительного времени. Этот метод в настоящее время широко применяется в газовом анализе вследствие большей точности и возможности сокращения числа поглотительных пипеток до одной — двух, "благодаря чему прибор становится более компактным. —/7рил(. перев. [c.767]

    Предполагаемый механизм 137] термических синтезов включает а) образование метастабильного промежуточного продукта присоединения путем взаимодействия способного к отдаче электронов концевого атома углерода олефина с электрофильным атомом кремния силана, б) одновременную или последовательную быструю миграцию иона водорода от пятиковалентного кремния к углероду продукта присоединения с превращением в стабильный конечный продукт. По-видимому, реакция образования силикониевого иона не зависит от прочности связи Н — 31, так как ВС1з не является катализатором в этих процессах в отличие от реакций с участием бензола. Тот факт, что скорость реакций с метилзамещенными хлорсиланами резко снижается, подтверждает предполагаемый механизм. Так, можно ожидать, что избыток электронов у метильных групп понижает восприимчивость кремния к нуклеофильной атаке олефина. [c.166]

    Кольбель и Энгельгардт [36] указывают, что по карбидной теории температура синтеза на железных катализаторах должна бго1ть намного ниже, чем на кобальтовых, так как железо обладает значительно большей склонностью к образованию карбидов, чем кобальт. Фактически наблюдается обратное. Они считают, что в ходе реакции образуются продукты присоединения окиси углерода к металлу, которые могут рассматриваться как карбонилы. [c.88]


    Р. Ивелл [86] недавно высказал мнение, что механизм реакции через радикалы неприемлем. Основанием такого заключения явился тот факт, что при нитровании этана вплоть до 27% образуется нитрометан, этиловый же радикал не распадается на продукт только с одним атомом углерода. Для объяснения факта появления низкомолекулярных нитропарафинов автор принимает образование продукта присоединения азотной кислоты и углеводорода, которьц может либо распадаться на спирт и низкомолекулярный нитропарафин, либо переходить в соответствующий целевой нитропарафин. [c.284]

    Гидролиз, как и в случае ангидрида этионовой кислоты, дает гидро-ксисульфонат R H—(ОН)СНз SO3H. Интерес к этой реакции основан на ценности продуктов, получаемых из олефинов с числом углеродных атомов более 10, используемых в качестве детергентов, особенно гидроксисульфо-наты из гексадецена-1 и гептадецена-1. Изобутилен образует непредельную алкилсерную кислоту [35]. В олефинах-1 атом серы всегда соединен с крайним атомом углерода, как было показано выше [37]. Стирол дает продукт присоединения, который при гидролизе образует [2] главным образом соединение [c.351]

    Действие азотной кислоты на олефины было уже описано, но результаты более ранних работ разноречивы и иногда запутаны, а так как шло очень сильное окисление, то образующиеся в результате окислы азота присоединялись по двойной связи, как уже отмечалось выше. При пропускании этилена в чистую 98,6%-иую азотную кислоту при —30° сначала образуются пары окислов азота. При аналогичных условиях бутен-1 дает только продукты окисления. Триметилэтилен в растворе четырех-хлорйстого углерода при —20° дает в качестве основного продукта туоет-аммлнитрат, продукт присоединения кислоты по двойной связи аналогично изобутилен дает / г/)ет-бутилнитрат [21]. [c.378]

    Значения теплот комплексообразования, опубликованные различными авторами, приведены в табл. 3. Наблюдаемая величина теплового эффекта образования комплекса (порядка 1,6 ккал на 1 атом углерода) значительно больше теплоты кристаллических превращений углеводородов, в 2 раза больше теплоты плавления, на /з больше теплоты испарения и в то же время значительно меньше теплоты адсорбции н-парафинов на угле. Это позволило Циммершиду и Диннерштейну [20, 52] считать, что теплота образования комплекса есть разность теплот двух процессов, имеющих место при комплексообразованпи, — изотермического процесса адсорбции и эндотермического процесса смешения молекул карбамида в момент образования продуктов присоединения. [c.31]

    Как уже упоминалось, при действии хлора па олефины нормального строения в первую очередь образуются продукты присоединепи (нормальное хлорирование). Наряду с этим протекает аномальное хлорирование этих продуктов, которое индуцируется присутствующим олефипол . Следовательно, эта реакция замещения обязана своим протеканием энергии, выделяющейся при образовании продуктов присоединения хлора. ]3 молекуле исходного олефина замещения не наблюдается, по крайней мерс в тех случаях, когда длина цепи алкильных групп, связанных с пенасыщеппыми атомами углерода, мала. Напротив эти же самые олефины нормального строения дают продукты замещения, если па них действовать хлором при высокой температуре. Это наблюдение [12] привело к разработке метода получения хлористого аллила высокотемпературным хлорированием пропилена, а в дальнейшем — к производству синтетического глицерина чере.7 хлористый аллил. [c.357]

    Приблизительно в 1940 г. Бенген в Германии обнаружил, что парафины нормального строения образуют твердые продукты присоединения к мочевине, взятой в виде раствора в метиловом спирте, в то время как парафины изостроения таких продуктов присоединения не дают [14, 15]. Разделение основано на том, что пространство между молекулами в кристаллической мочевине достаточно велико, чтобы там поместились молекулы н-парафинов, и мало для молекул изопарафинов. Эти соединения включения не являются соединениями в обычном смысле слова, ибо в них нет постоянного молярного отношения между мочевиной и углеводородом продукты присоединения содержат около 0,65—0,7 молей мочевины на каждую метиленовую группу углеводорода. Такие продукты присоединения легко отфильтровать и разложить нагреванием, растворением в воде и т. п. Этот метод позволяет выделить из сложных смесей парафины нормального строения с числом атомов углерода от 6 до 20 [16]. Разработка процесса была доведена до стадии полузаводской установки. Описанный метод не ограничен применением только мочевины и только метилового спирта как растворителя. Например, тиомочевина образует соединения включения с сильно разветвленными парафинами и с циклическими соединениями [17]. [c.39]

    Тетра II итрометан образуется, например, из уксусного ангидрида и пяти-окиси азота или высокопроцентной азотной кислоты существуют и другие способы его получения. Это соединение представляет собой жидкость (т. пл. +13 , т. кип. 126 ) оно очень устойчиво, но способно воспламеняться со в 1рывом в смеси с веществами, богатыми углеродом. Тетранитрометан обладает способностью образовывать окрашенные продукты присоединения с многими ненасыщенными веществами и поэтому применяется для открытия последних. [c.177]

    Кратная связь С = С в аллилмагнийхлориде поляризована в направлении крайнего атома углерода, и поэтому при взаимодействии его с разветвленными карбонильными соединениями при низких температурах более благоприятно образование переходного состояния с участием не димера, а мономера магнийорганического соединения, приводящего к получению нормального продукта присоединения, а не продукта восстановления  [c.284]

    Окись углерода поглощают аммиачным раствором хлористой закисной меди при этом образуется продукт присоединения  [c.447]

    Для понимания механизма электрофильного присоединения важно знать структуру продуктов присоединения, включая структуру продуктов побочных реакций. На основании данных о строении продуктов взаимодействия галогеноводородов с этиленовыми углеводородами было сформулировано правило Марковникова, в соответствии с которым водород галогеноводородной кислоты присоединяется к наиболее гидрогенизированному атому углерода кратной связи. Данное на основе электронных представлений объяснение атого правила сводится к тому, что в несимметрично построенных непредельных углеводородах электронодонориые алкильные группы поляризуют кратную связь таким образом, что максимальная электронная плотность локализуется иа удаленном от заместителя атоме углерода. В ионных реакциях электрофильный протон атакует обогащенный электронами атом углерода  [c.115]

    Образующиеся продукты присоединения, содержащие водород у соседнего с гидроксилированным атома углерода, отщепляют воду и превращаются в непредельные соединения. В реакциях Перкина и Кнёвенагеля дегидратация протекает настолько эффективно, что выделить оксисоединения обычно не удается. В других случаях дегидратацию можно осуществить, создавая более жесткие условия. Так, если проводить альдольную конденсацию при нагревании, можно сразу же получить непредельное карбонильное соединение продукт кротоновой конденсации аналогично можно оксинитросое-динение превратить в непредельное нитросоединение. [c.129]

    Нитрозамещенные спирты 74 можно также синтезировать косвенным методом путем присоединения ацетилнитрата АсОЫОг к двойным связям [602]. Получающийся -нитрозаме-щенный ацетат гидролизуется до спирта. В качестве побочных продуктов присоединения A ONO2 образуются нитроолефины. Присоединение подчиняется правилу Марковникова, причем нитрогруппа присоединяется к наиболее гидрогенизированному атому углерода. [c.231]

    Особое место занимают ароматические углеводороды, родоначальником которых является бензол. Характерной отличительной особенностью бензола является его плоская циклическая структура с единой я-электронной системой. Все атомы углерода в бензоле равноценны, что объясняется делокализацией я-электронов. Алканы преимущественно вступают в. реакции радикального замещения (5 ), а алкены и алкины— в реакции присоединения. Взаимодействие алкенвв и алкинов с водой, галогеноводородами и другими полярными молекулами происходит в соответствии с правилом Мар-ковникова. Данное правило отражает суть взаимного влияния атомов в молекулах. Диеновые углеводороды взаимодействуют с га-логедами и галогеноводородами с образованием преимущественно продуктов присоединения по положениям 1, 4. Это объясняется строением промежуточно образующегося карбкатиона. Особенностью арол атических углеводородов является их свойство легко вступать в реакции электрофильного замещения. Строение образующегося продукта реакции определяется правилами ориентации и природой атакующего реагента. [c.356]

    Продукт присоединения образуется за счет взаимодействия свободной электронной пары азота с карбонильным углеродом, на котором вследствие поляризации связи С=0 имеется йстич-ный положительный заряд. При этом электронная пара азота переходит в совместное владение с карбонильным углеродом. Но последний уже до реакции имел заполненный октет на внешней электронной оболочке и принять еще пару электронов не может. Поэтому одновременно с установлением связи между азотом и карбонильным углеродом подвижная электронная пара я-связи С=0 оттесняется на атом кислорода, который приобретает таким образом отрицательный заряд (стадия 1). В создавшейся промежуточной структуре имеется разделение зарядов — на азоте положительный заряд, на кислороде отрицательный, что повышает энергию структуры. Стабилизация происходит за счет отщепления хлороводорода (стадия 2). Окончательным результатом является введение к азоту ацильной группы вместо атома азота — ацилирование амина. [c.230]

    При действии фенилмагнийбромида на / -(—)-ментиловый эфир кротоновой кислоты можно выделить продукт присоединения по двойной углерод-углеродной связи. При этом преимущественно образуется 5-(+)-Р-фенилмасляная кислота с оптическим выходом 5,4%. Проведение той же реакции в присутствии однохлористой меди приводит к Я- —)-р-фенил-масляной кислоте оптический выход возрастает до 10,2%. [c.144]

    Если же в орто-положениях находятся объемистые заместители (X), то ацетильная группа повернута перпендикулярно плоскости бензольного кольца и подход нуклеофильного реагента к карбонильному углероду блокирован со всех сторон снизу — бензольным ядром, сверху — группой СНз, справа и слева — орто-заместителями. В соответствии с этим, например, 2,4,6-триметилацетофенон не способен образовывать продукты присоединения по карбонильной группе. [c.504]


Смотреть страницы где упоминается термин Углерод продукты присоединения: [c.392]    [c.233]    [c.434]    [c.359]    [c.338]    [c.59]    [c.140]    [c.12]    [c.143]    [c.330]    [c.403]    [c.156]    [c.510]    [c.111]    [c.359]   
Курс неорганической химии (1963) -- [ c.486 ]

Курс неорганической химии (1972) -- [ c.435 ]




ПОИСК





Смотрите так же термины и статьи:

Продукты присоединения

Продукты углерода углерода



© 2025 chem21.info Реклама на сайте