Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Источники света пламя

    Для наиболее стабильных источников света (пламя, ИСП, тлеющий разряд) величина относительного стандартного отклонения, характеризующего воспроизводимость составляет 0,01-0,05. Для искрового и, особенно, дугового разрядов воспроизводимость существенно хуже Зг = 0,05-0,1 и = 0,1-0,2 соответственно). [c.424]

    Возбуждение атомов до свечения имеет главным образом термический характер. Необходимую для возбуждения энергию атом получает в источниках света (пламя, дуга, искра и т. д.) в результате столкновений с различными частицами. [c.25]


    Многие аналитические задачи, в том числе задачи контроля качества веществ высокой чистоты, можно решать при помощи различных источников света (пламя, дуга, искра и др.). Например, хорошо известно, что пламя как источник возбуждения спектра применяют преимущественно для определения щелочных и щелочноземельных металлов. Но эти металлы также можно определять с высокой чувствительностью в дуге постоянного или переменного тока. [c.51]

    Излучение энергии атомов в источниках света (пламя, электрическая дуга и др.) связано с энергиями и 2 обоих состояний атома известным соотношением [c.5]

    В эмиссионном анализе с этой целью пробу вносят в источник света (пламя или газовый разряд), где происходит нагревание, испарение пробы, диссоциация молекул большинства веществ на атомы (атомизация) и возбуждение отдельных атомов и ионов. Поэтому эмиссионный анализ в большинстве случаев — атомный. [c.10]

    Поэтому, применяя в качестве источника света пламя, дугу или искру, мы получаем линейчатые атомные спектры. [c.11]

    Точное измерение почернения аналитических линий позволяет достаточно точно установить зависимость интенсивности от концентрации. Большей частью эта зависимость выражается в виде градуировочного графика. Если для анализа используют стабильный источник света (пламя, ВЧ-плазмотрон), градуировочный график строят, откладывая по оси абсцисс логарифм концентрации, а по оси ординат — почернение аналитической линии. График получается прямолинейным, если аналитическая линия в спектрах всех стандартных образцов попадает в область нормальных почернений, коэффициенты а и e в формуле зависимости интенсивности линии от концентрации / = аС постоянны. При использовании менее стабильных источников света (дуга, искра й др.) приходится для построения градуировочного графика использовать относительную интенсивность. График в этом случае удобно строить в координатах логарифм концентрации Ig С — разность почернений А5, так как AS находится в линейной зависимости от логарифма относительной [c.207]

    Для возбуждения спектра применяют различные источники света. Пламя, применявшееся в первые годы развития спектрального анализа, затем не использовалось из-за низкой температуры. Однако теперь появилась возможность применять высокотемпературное (водородо-кислородное и т. п.) пламя. Если раньше удавалось возбуждать в пламени только спектры элементов с низкими потенциалами возбуждения (щелочные и щелочноземельные), то теперь круг элементов, возбуждаемых в пламени, значительно расширился. Пламя применяют обычно при анализе жидких проб, реже сыпучих, но оно непригодно при анализе твердых металлических веществ. Жидкую пробу впрыскивают в ток воздуха или кислорода вместе с газом проба поступает в пламя. [c.205]


    В качестве источника света эти ученые пользовались изобретенной Бунзеном горелкой — той самой бунзеновской горелкой, которая известна каждому начинающему химику. Сгорающая в горелке смесь газа и воздуха дает почти бесцветное пламя с достаточно высокой температурой. Когда Кирхгоф помещал в пламя горелки крупицы различных химических веществ, оно окрашивалось в разные цвета. Свет от такого пламени, пропущенный через призму, давал не сплошную полосу, а отдельные яркие линии. [c.100]

    Пламя используют в качестве источника света в так называемом методе фотометрии пламени, а также как один из основных способов атомизации веществ в методе атомно-абсорбционного анализа (см. разд. 3.2). В зависимости от состава горючей смеси температура пламени может поддерживаться в интервале 2000—3000 К, что обеспечивает достаточно низкий предел обнаружения элементов, энергии возбуждения резонансных линий которых не превышают 5 эВ и соединения которых атомизируются в пламени в достаточной мере. Особое значение метод фотометрии пламени имеет для определения микроколичеств соединений щелочных и щелочноземельных металлов, для которых предел обнаружения этим методом находится в диапазоне 0,001 — 1 нг/мл. Предел обнаружения порядка 0,1—1 нг/мл достигается также для таких элементов, как европий, иттербий, свинец, медь, серебро, индий, таллий, хром, марганец, алюминий и галлий, причем в некоторых случаях в качестве аналитического сигнала используют молекулярную эмиссию пламени. Освоение высокотемпературных пламен (водородно-кислородного, ацетилен-кислородного) позволило значительно увеличить число определяемых элементов. [c.58]

    В методе эмиссионной фотометрии пламя является атомизатором вещества и источником света. Это наиболее простой и распространенный способ получения атомного пара, а также наиболее стабильный источник света. [c.11]

    На рис. Д.154 приведена принципиальная схема установки атомно-абсорбционного анализа. Для увеличения поглощения обычно применяют вытянутое в длину пламя. Резонансное характеристическое излучение определяемого элемента возбуждают с помощью источника света. После этого излучение попадает в пламя, проходит через монохроматор и регистрируется, Чувствительность метода зависит от частоты резонансного характеристического излучения, а также в значительной степени от интенсивности возбуждающего резонансного излучения. [c.379]

    Испарение и возбуждение осуществляют в источниках света, в которые вводится анализируемая проба. В качестве источников света используют высокотемпературное пламя или различные типы электрического разряда в газах дугу, искру и др. Для получения электрического разряда с нужными характеристиками служат генераторы. [c.7]

    Пламя было первым источником света для эмиссионного спектрального анализа. Окрашивание пламени при введении пробы в течение ста лет служит для открытия ряда металлов. Но в целом пламя применяли мало, используя, главным образом, электрические источники света. Сравнительно недавно была разработана новая техника работы, которая позволила выявить ряд ценных характеристик пламени как источника света. В настоящее время методы спектрального анализа с использованием пламени широко распространены. Они получили специальное название — пламенная фотометрия. В атомно-абсорбционном анализе пламя используется для испарения вещества и диссоциации его молекул на атомы. [c.80]

    К сожалению, число определяемых в пламени элементов ограничено. Большинство элементов трудно или вообще невозможно определить, применяя пламя в качестве источника света. [c.82]

    В последние годы стали использовать в качестве источника света так называемые плазматроны. В плазматроне мощная дуга горит в замкнутом пространстве между охлаждаемыми водой электродами. Дуга горит в атмосфере аргона, азота или другого газа. Нагретый в дуге до температуры около 10 000° газ через сопло выходит из плазма-трона, образуя яркий конус. Свечение этого конуса и используется при спектральном анализе. Проба (порошок или раствор) вводится в горячую струю газа после электродов и поэтому не влияет на горение разряда. Плазматрон так же, как и пламя, имеет высокую стабильность и яркость, а по своей температуре близок к электрическим источникам света — дуге и искре. [c.82]

    Пример. Наибольшую чувствительность открытия кальция можно получить в пламени при работе с дуговой линией 4226,7 А. Эту линию и пламя в качестве источника света следует использовать, когда требуется с высокой чувствительностью открыть в пробе присутствие одного кальция. Но если для одновременного открытия большинства других элементов в той же пробе необходимо использовать дугу или тем более искру, то применяют другую линию Са П 3933,7 А. В дуге и искре эта линия чувствительнее, чем первая, но в целом чувствительность открытия кальция при этом снижается. [c.219]


    Плавление. Температура всех источников света достаточна для плавления любых образцов. Однако крупные монолитные или прессованные образцы в пламя вводить неудобно, так как энергия в пламени выделяется в большом объеме, и плавление и испарение вещества с поверхности таких образцов происходит медленно и неравномерно. Поэтому лучше всего вводить мелкий порошок, так как мелкие частицы плавятся и испаряются одновременно в разных местах пламени. В большинстве электрических источников света происходит достаточно сильный нагрев электродов в районе действия разряда и плавление образца. Между разрядом и твердым образцом образуется расплав, который постепенно испаряется (см. рис. 30 и 35, 4). [c.235]

    Атомно-абсорбционный анализ. В течение последних десяти лет получил большое распространение новый вид атомного анализа по спектрам поглощения. Получить резонансное поглощение отдельных атомов можно только в парах. Поэтому анализируемую пробу вводят в высокотемпературное пламя, где она испаряется и диссоциирует на отдельные атомы, так же как и в методе пламенной фотометрии. Для более полной диссоциации молекул обычно используют восстановительное пламя, в котором образование устойчивых двухатомных молекул происходит реже. Концентрацию анализируемых элементов в пламени определяют не по излучению возбужденных атомов, а по поглощению света от дополнительного источника невозбужденными атомами. В качестве источника света используют отпаянные трубки с полым катодом (или высокочастотным разрядом), в которые тем или иным способом вводится один или несколько определяемых элементов. Такие трубки в течение длительного времени стабильно излучают узкие резонансные линии введенных элементов. Проходя через пламя, это излучение частично поглощается невозбужденными атомами анализируемой пробы, введенной в пламя. С ростом концентрации анализируемого элемента увеличивается упругость его паров [c.274]

    Пламенная фотометрия — один из методов атомно-эмиссионного спектрального анализа. Этот метод состоит в том, что анализируемый образец переводят в раствор, который затем с помощью распылителя превращается в аэрозоль и подается в пламя горелки. Растворитель испаряется, а элементы, возбуждаясь, излучают спектр. Анализируемая спектральная линия выделяется с помощью прибора — монохроматора или светофильтра, а интенсивность ее свечения измеряется фотоэлементом. Пламя выгодно отличается от электрических источников света тем, что поступающие из баллона газ-топливо и газ-окислитель дают очень стабильное, равномерно горящее пламя. Из-за невысокой температуры в пламени возбуждаются элементы с низкими потенциалами возбуждения в первую очередь щелочные элементы, для определения которых практически нет экспрессных химических методов, а также щелочно-земельные и другие элементы. Всего этим методом определяют более 70 элементов. Использование индукционного высокочастотного разряда и дуговой плазменной горелки плазмотрона позволяет определять элементы с высоким потенциалом ионизации, а также элементы, образующие термостойкие оксиды, для возбуждения которых пламя малопригодно. [c.647]

    Какую роль играет пламя горючей газовой смеси в атомноабсорбционном анализе а) возбудителя атомов б) атомизатора молекул в) атомизатора и возбудителя одновременно г) источника света  [c.206]

    Определение кадмия проводят методом добавок анализируемый раствор распыляют с помощью углового распылителя в пламя светильный газ — воздух, протяженной (12 см) щелевой горелки источником света служит без-электродная лампа с парами кадмия. [c.182]

    Олтическпе характеристики определяют при помощи рефрактометров. Наиболее точными из них, позволяющими определять показатель преломления с точностью до пятого десятичного знака, явля ется рефрактометры типа Пульфриха. Исследуемую жидкост). нализают в сосуд, дном которого служит стеклянная призма с бопьшим, чем у жидкости, показателем преломления (и = = 1,"400). Лучи от однородного источника света (натриевое плама) направляют на основную призму через вспомогательную призму полного внутреннего отражения. Свет преломляется прп входе в стекло и еще раз при выходе из стекла на воздух (рпс. 25), [c.134]

    Принципиальная схема атомно-абсорбционного спектрофотометра показана иа рис. 17. С помощью распылителя 1 аэрозоль исследуемого раство )а в смеси с горючим газом подается в пламя щелевой горелки 2. Прошедшее через пламя излучение от лампы с полым катодом 3 попадает на входную щель монохроматора 4. Интенсивность резонансной линии измеряют фотоэлектрическим методом (фотоумно житель 5, усилитель 7). Интенсивность линии от источника света, прошедшей через поглощающий слой атомов элемента в пламени, измеряют, принимая интенсивность неослабленной линии за 100%. и регистрируют с помощью отсчетного устройства 9 или самописца. [c.40]

    Если требуется выполнить определение только одного элемента, для него можно подобрать оптимальные условия возбуждения. Так, при определении щелочных металлов целесообразно использовать по возможности низкотемпературное пламя. Оно вызывает испускание света только атомами щелочных металлов, но пе труднее возбуждаемыми сопутствующими элементами, например щелочноземельными. Для трудновозбуждаемых элементов требуются более мощные источники возбуждения (пламя гремучего газа, стабилизированная дуга, искра). При их применении следует ожидать появления значительного матричного эффекта, обусловленного катионами, — для его учета был предложен ряд методов [27]. Наилучшей предпосылкой для применения спектрометрического анализа является возможно большее сходство анализируемых проб. [c.196]

Рис. 8.3. Поглощение излучения узкополосного источника света атомами определяемого элемента а — контур полосы испускания источника света (ДЯмопохр — —Я-а) Д исп С < ДА,мопохр б контур ли НИИ поглощения определяемо го элемента ДА, огл<Д мопохр в — контур полосы испуска ния источника после прохож дения через пламя с определя емым элементом и монохроматор Рис. 8.3. <a href="/info/6186">Поглощение излучения</a> <a href="/info/1720199">узкополосного источника</a> света атомами определяемого элемента а — <a href="/info/147082">контур полосы</a> испускания <a href="/info/128501">источника света</a> (ДЯмопохр — —Я-а) Д исп С < ДА,мопохр б контур ли НИИ поглощения определяемо го элемента ДА, огл<Д мопохр в — <a href="/info/147082">контур полосы</a> испуска ния источника после прохож дения через пламя с определя емым элементом и монохроматор
    В 1955 г, австралийский ученый А, Уолш предложил атомно-абсорбциоппую спектрометрию как аналитический метод определения элементов, и в качестве атомизатора пробы им было использовано пламя. Пламя в атомно-абсорбционном методе выполняло функцию не только атомизатора, но и кюветы для пробы, т, е. атомных паров. Поскольку в атомно-абсорбциоппых измерениях соблюдается закон Вера, то, разумеется, чем больше толщина поглощающего слоя (т, е, длина пламени, просвечиваемого источником света), тем выше чувствительность метода. Поэтому [c.148]

    Методы введения растворов. Распыление растворов — самый удобный и распространенный метод введения вещества в пламя. При работе с электрическими источниками света растворы применяют реже. Обычно к ним прибегают, когда при работе с твердыми пробами слишком низка чувствительность анализа или не удается устранить в нужной степерш влияние состава и структуры образца на результаты. При введении растворов отсутствуют почти все те сложные процессы, которые именэт место при работе с твердыми образцами. Переход к растворам разрушает структуру пробы. Остается только влияние молекулярного состаоа пробы на результаты анализа. Поэтому при переводе пробы в раствор стараются получать для каждого элемента всегда одно и то же молекулярное соединение. [c.254]

    Пламенная фотометрия. Наиболее простыми являются фотоэлектрические приборы, где в качестве источников света использовано пламя. Большие световые потоки, вцсокая стабильность пламени и отсутствие электрических помех, даваемых источником, — все это значительно облегчает задачу и позволяет сделать регистрирующее устройство весьма простым. [c.273]

    Атомное поглощение было известно еще в начале прошлого столетия, однако для аналитических целей его начали применять в 1955 г., когда физик Уолш предложил схему прибора. Она состоит из источника света , пламени, монохроматоров 3—5 и блока усиления и регистрации (рис. 30.22). Свет от лампы полого катода,. излучающей дуговой спектр определяемого металла, проходит через пламя горелки и [c.699]

    Если источником света является разрядная трубка, содержащая некоторый элемент в газообразном состоянии, то возникает спектр, состоящий из линий различного цвета на черном фоне. Такой спектр называют атомным спектром испускания (эмиссии) или линейчатым спектром (рис. 2.1,6). Спектры испускания можно получить для любого вещества, если тем или иным способом возбудить его, например, с помощью электрического разряда или нагревая вещество в пламени. Атомные спектры испускания лежат в видимой и ультрафиолетовой областях спектра. Если внести в пламя горелки натрий или его соединение, то излучается свет с длиной волны 590 нм, и пламя окращи-вается в желтый цвет. У водорода, помещенного в трубку и возбуждаемого с помощью электрического разряда, цвет свечения красновато-розовый. [c.36]

    Для обеспечения эффективного перехода пламени от головки к соломке последняя около головки пропитывается расплавленным парафином. Спички с непарафини-рованной соломкой гаснут практически вслед за сгоранием головки. Парафин легко воспламеняется при горении головки и дает яркое пламя, что важно в случае использования спички как источника света. Кроме того, он обладает хорошей теплотворной способностью, способствующей возгоранию соломки, безопасен при хранении спичек, не выделяет при горении копоти, дыма или вредных газов. [c.31]

    После Ескрытия амиулы металл растворяют в этаноле, затем растворяют осадок вводе и доводят концентрацию раствора по рубидию до 1%, прибавляя смесь (1 1) воды с этанолом. Для анализа используют атомно-абсорбционный метод на основе монохроматора ЗМР-3 с приемником излучения ФЭУ-22, пламя — смесь пропана с воздухом. Источник света — безэлектродные ВЧ-лампы типа ВСБ-2. Рубидий не влияет на определение натрия. Чувствительность анализа повышается за счет применения органического растворителя и нагревания аэрозоля [421]. [c.165]

    Навеску пробы 2 г помещают в платиновый тигель и отгоняют Ge l4 при температуре 70° С в токе неона или аргона. Остаток растворяют в 6 М НС1, высушивают и растворяют в воде. Для определения натрия используют атомно-абсорб-ционный метод, спектрофотометр на основе монохроматора ЗМР-3, источник света — безэлектродные ВЧ-лампы ВСБ-2, пламя пропан—воздух. Предел обнаружения натриц 5-10 %. При содержании натрия 0,0002 мг/мл относительное стандартное отклонение 0,05. [c.170]

    В качестве атомизаторов для ЗЬ наиболее часто используют пламена. Изучена [1251] возможность атомно-флуоресцентного определения ЗЬ в различных пламенах с применением в качестве источника света высокоинтенсивной лампы с полым катодом и атомно-абсорбционного спектрофотометра Вариан-Тектрон АА4, видоизмененного для атомно-флуоресцентных измерений. Исследованы пламена смесей На — воздух, — Аг, Н — Оа — Аг и СаНа — воздух. Наиболее эффектным оказалось пламя смеси На с Аг (диффузное) с расходом 0,95 л1мин На и 5,5 л мин Аг. Когда тушение флуоресценции мало, наибольшей чувствительностью характеризуются резонансные линии ЗЬ 206,83 217,58 и 231,15 нм, по которым пределы обнаружения ЗЬ найдены равными соответственно 0,1, 0,03 и 0,1 мкг мл. В пламени смеси На с Оа и Аг (1,15 л мин На, 0,2 л мин Оа и 5,5 л мин воздуха) пределы обнаружения ЗЬ по тем же линиям несколько хуже (соответственно 0,1, 0,05 и 0,1Ъ мкг мл). [c.94]

    В конце 50-х гг. XIX в. немецкий физик Г. Р. Кирхгоф и его соотечественник Р. В. Бунзен предположили, что эти линии содержат информацию об элементах, содержащихся в солнечной атмосфере. Они впервые стали использовать для исследования вещества искусственный источник света и тепла — газовую горелку. Помещенные в бесцветное пламя горелки крупицы различных химических веществ окрашивают его в различные цвета, а после пропускания света пламени через коллиматорную щель и призму обрузуют ряд ярких линий — спектр испускания (эмиссионный спектр) вещества. Кирхгоф и Бунзен показали, что для каждого элемента, разогретого в пламени газовой горелки, характерен свой спектр, и тем самым заложили основы спектрального анализа. Они открыли дотоле неизвестные элементы цезий и рубидий, названные так по цвету, в который они окрашивают пламя бунзеновской горелки (по латыни саеа1из — небес-но-синий, гиЫс1шв — красный). [c.16]

    Метод пламенной фотометрии основан на фото мет ричес- ком измерении излучения элементов в высокотемператур. ном пламени. Анализируе.мый раствор сжатым воздухом разбрызгивается в пламени газовой горелки, в которой сгорает ацетилен, водород, светильный или какой-либо другой газ. Пламя горелки при этом окрашивается в характерный для данного элемента цвет. Пламя горелки служит также источником света для возбуждения спектра. Оптическим устройством прибора выделают спектральную линию определяемого элемента и измеряют ее интенсивность с помощью фотоэлемента. Интенсивность излучения спектральной линии прямо пропорциональна концентрации соли в растворе (в определенных границах). Концентрацию элемента определяют по градуировочному графику или с помощью компенсационного самописца. [c.246]

    Метод атомно-абсорбционной спектрофотометрии является сравнительно новыли и весьма перспективным для химического анализа. Первые работы по его использованию опубликованы в 1955 г. [486, 1184]. Метод основан на способности свободных атомов определяемого элемента избирательно поглощать излучение только определенной длины волны. Анализируемый раствор вводят в пламя горелки или другой атомизатор элементы, находящиеся в растворе в виде химических соединений, переводят в свободные атомы и радикалы. Подбирают также условия, чтобы определяемый элемент полностью или возможно большей частью переходил в свободные невозбуисденные атомы, способные поглощать световую энергию резонансных линий, излучаемую специальным источником света, например, лампой с полым катодом, высокочастотной безэлектродной лампой или другим подходящим источником. [c.101]

    Определение проводят но поглощению в пламени резонансной линии Сс1 2288,0 А, источником света служат высокочастотные безэлектродные лампы с парами кадмия или лампы с полым Сс1-катодом, реже — дуговые нарометаллические лампы. Растворы проб распыляют при помощи углового или концентрического распылителя и в смеси с горючим газом вводят в протяженное пламя длиной 10 атомно-абсорбционной горелки. Искомое содержание рассчитывают по калибровочным графикам в координатах оптическая плотность пламени при длине волны аналитической линии Сс1 — его концентрация в эталонных растворах мкг мл водных растворов чистых солей кадмия) реже исполь- [c.129]

    При атомно-абсорбционном определении кадмия в сталях 1 г пробы растворяют в смеси 10 мл НС1 vl2 мл HNO3. Раствор разбавляют водой до 100 мл и распыляют в пламя светильного газа с воздухом протяженностью 10 мл, источник света — лампа с полым катодом. Чувствительность определения кадмия 0,03 мкг мл (3-10 %), ошибка < 10%. Не мешают определению до 5% AI, Мо, РЬ, Ti, V, до 10% Со, Си и до 20% Сг, Ni и Мп [777]. [c.174]


Смотреть страницы где упоминается термин Источники света пламя: [c.53]    [c.157]    [c.113]    [c.699]    [c.135]    [c.168]    [c.168]    [c.200]    [c.201]    [c.203]   
Атомно-абсорбционная спектроскопия (1971) -- [ c.5 , c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Источники света



© 2025 chem21.info Реклама на сайте