Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация процессов электрохимическая

    КЛАССИФИКАЦИЯ ПРОЦЕССОВ ЭЛЕКТРОХИМИЧЕСКОГО ИНИЦИИРОВАНИЯ [c.5]

    В основу классификации процессов растворения могут быть положены различные принципы. Мы остановимся на более общей классификации, основанной на физико-химической природе взаимодействия фаз и рассматривающей физическое, химическое и электрохимическое растворения. [c.8]

    Классификация по виду энергии, необходимой для проведения реакции (термические процессы, электрохимические процессы, фотохимические процессы), по условиям реакции (давление, температура) или фазовым комбинациям реакционных масс. Конструирование реакторов в зависимости от способа действия — периодического или непрерывного. [c.545]


    Разработанная классификация различных методов защиты, при-веденная в таблице, — первая попытка систематизировать защитные мероприятия по характеру их воздействия на торможение основных ступеней процесса электрохимической коррозии и степень термодинамической нестабильности. [c.17]

    С научной точки зрения разбор и классификацию всех существующих разнообразных методов защиты металлов от электрохимической коррозии можно осуществить не на основе условий их применения или технологии осуществления, как это сделано выше, а на базе приложения теории электрохимической коррозии. Для этой цели необходимо правильно выявить механизм защитного действия каждого метода защиты, т. е установить на какую ступень в цепи последовательных процессов электрохимического растворения металла данный метод оказывает основное торможение. [c.194]

    Предложена классификация реакций электрохимического получения металлоорганических соединений и рассмотрены механизмы этих реакций. Отмечается, что в зависимости от структуры исходного органического вещества и металла катода катодный процесс может протекать как реакция взаимодействия органических анион-радикалов с материалом катода, как результат восстановления промежуточного хемосорбированного комплекса и. наконец, через стадию образования гидрида металла. Анодные процесы протекают обычно по радикальному механизму, хотя в некоторых случаях возможно образование промежуточных соединений. Описан также ряд конструкций электролизеров. Таблиц 13. Иллюстраций 7. Библ. 123 назв. [c.383]

    Классификацию способов, приводящих к образованию полимерных осадков, целесообразно, как и в случае объемной электрохимически инициированной (со)полимеризации, проводить по типу электродного процесса, в результате которого возникают активные центры (со) полимеризации, и по механизму инициирования роста макромолекулы [13, с. 9]. Классификация по типу электродных процессов была впервые произведена Г. С. Шаповал [14, 15], которая предложила разделять процессы электрохимически инициированной (со)полимеризации на прямые и непрямые. [c.6]

    По значениям других параметров технологического режима процессы можно разделить на низко- и высокотемпературные, каталитические и некаталитические, происходящие под вакуумом, при нормальном и высоком давлении, с высокой и низкой концентрацией исходных веществ. Однако такая классификация, применяемая в некоторых руководствах по отдельным химическим производствам, излишне сложна для общего курса химической технологии. Поэтому классификация процессов осуществляется по наиболее важным и характерным для них параметрам режима. Процессы делятся на 1) низкотемпературные некаталитические, 2) высокотемпературные, 3) каталитические и 4) электрохимические.  [c.44]


    Классификация коррозионных процессов и механизм химической и электрохимической коррозии рассмотрен в разделе 1.6. [c.90]

    Наиболее общей является классификация по природе процессов разделения химические и физико-химические (экстракция, сорбция, соосаждение, электрохимические методы и др.) и физические (испарение, зонная плавка, направленная кристаллизация и др.). [c.308]

    Скорость электрохимического процесса определяется самой медленной стадией, которая в разных электродных реакциях может быть различной по своей природе. Это служит основанием для классификации электрохимических процессов. В любых электрохимических процессах тип поляризации может быть определен ио абсолютной величине эффективной энергии активации, т. е. той энергии, которая необходима, чтобы молекула или ион вступили в электрохимическое взаимодействие, по ее зависимости от потенциала поляризации и скорости перемешивания. Эффективная энергия активации электрохимической реакции может быть определена при постоянном потенциале поляризации по линейной зависимости логарифма плотности тока от обратного значения абсолютной температуры. [c.403]

    Поскольку во всех электрохимических методах анализа передающая часть соответствующей электрической цепи всегда содержит электроды, в основу классификации методов целесообразно положить процессы, проис- [c.96]

    В 18И—1818 гг. Я. Берцелиус па электрохимической основе дал классификацию реакционной способности элементов. Он пытался обосновать сущность сил химического сродства и возникновение тепловых и световых аффектов при химических процессах, дополняя кислородную теорию Лавуазье новыми данными. [c.137]

    Элементарные составляющие химических компонентов — атомы, молекулы, функциональные группы атомов, ионы, формульные единицы ионов — узнаются и определяются по аналитическим сигналам, которые возникают при протекании определенных процессов внутри этих объектов или между ними. Химику-аналитику при этом безразлично, имеет ли такой процесс химический характер или причиной возникновения сигнала служит чисто физическое явление. Другими словами, для получения информации об элементарных составляющих химических компонентов исследуемого материала аналитик использует все возможности. При классификации же аналитических методов характер процесса, обусловливающего возникновение аналитического сигнала, должен играть первостепенную роль. На этой основе методы анализа можно подразделять на химические, электрохимические, спектроскопические и радиохимические. [c.17]

    Можно классифицировать методы определения по характеру измеряемого свойства или по способу регистрации соответствующего сигнала. Методы определения делятся на химические, физические и биологические. Химические методы базируются на химических (в том числе электрохимических) реакциях. Сюда можно отнести и методы, называемые физикохимическими. Физические методы основаны на физических явлениях и процессах (взаимодействие вещества с потоком энергии), биологические — на явлении жизни. Эта классификация условна. Так, фотометрические методы могут быть и химическими (в больщинстве случаев), и чисто физическими. Это относится и к люминесцентным методам. В ядерно-физических методах иногда важную роль играют химические операции это особенно относится к радиохимическим методам. [c.8]

    Механизм электрохимического восстановления пероксидов изучен мало. Как правило, авторы многих работ приводят уравнения электродных реакций, характеризующих двухэлектронный процесс. Бернард [261] сделал попытку обосновать механизм восстановления различных пероксидов и в зависимости от легкости восстановления предлагает следующую классификацию пероксидов i) очень легко восстанавливающиеся пероксиды Е[/2>—0,3 В) 2) пероксиды, восстанавливающиеся при —0,3 до —1,1 В, гидропероксиды. [c.163]

    Одним из главнейших способов классификации коррозии, который позволяет наиболее полно охарактеризовать процессы, протекающие при взаимодействии материалов и коррозионных сред, является классификация по механизму коррозионного процесса. По этому методу классификации коррозию принято делить на следующие виды коррозия химическая, электрохимическая и биохимическая. [c.49]

    Существуют различные способы классификации электрохимических методов — от очень простых до очень сложных, включающих рассмотрение деталей электродных процессов. В табл. 10.1 дана классификация [c.131]

    Таким образом, учитывая влияние перечисленных факторов па лимитирующую стадию электрохимического процесса, классификацию способов интенсификации электрохимического растворения можно представить в виде схемы на рис. 1П.29. [c.171]

    Из приведенной здесь классификации коррозионных процессов принято считать, что только в сухих газах и не проводящих электрический ток жидкостях коррозия протекает но химическому механизму, а что во всех остальных случаях протекает электрохимическая коррозия. Она идет так, что передача электронов от металлов к окислителям приводит к деятельности гальванических элементов, которые (по разным причинам) образуются на поверхности металла. Одной из возможных причин появления таких гальванических элементов являются примеси, существующие в технических металлах, которые вместе с основным металлом образуют электроды гальванопар, как это изображено на рис. 46. Другой причиной могут быть поры в пленке окиси, обычно существующей на поверхности металлов (рис. 47). Обнаженный металл и [c.180]


    Несомненно, в дальнейшем при получении более широких данных по количественной характеристике воздействия каждого вида защиты на электрохимический процесс коррозии эта классификация может быть значительно уточнена. Но даже в тако у1 качественном виде проведенная систематизация люжет быть полезной для правильного понимания возможностей и особенностей каждого метода защиты и наиболее рационального применения того или иного защитного мероприятия для данных условий. [c.17]

    В этой главе будут рассмотрены принципы конструктивного оформления электрохимических процессов, связанных с получением различных химических продуктов. Конструкции лабораторных и промышленных электролизеров определяются в первую очередь природой исходных веществ и конечных продуктов электролиза и условиями проведения электрохимических превращений. Этот принцип будет положен в основу классификации конструкций электролизеров, применяемых как в лаборатории, так и промышленном производстве. [c.168]

    Природа и число отдельных скачков потенциала, входящих в электрохимические системы, могут служить основой для классификации последних. Следует заметить, что обе классификации по природе процесса и форме уравнения для э. д. с. и по числу скачков потенциалов, образующих э. д. с., приводят примерно к одному и тому же распределению электрохимических цепей между отдельными типами. Так, сложные химические цепи включают в себя наибольшее число отдельных скачков потенциала, в то время как э. д. с. концентрационной газовой цепи слагается лишь из двух нернстовских потенциалов. [c.205]

    В каждой главе сборника, охватывающей соответствующую отрасль электрохимических производств, приводятся примеры 0С1ЮВНЫХ расчетов, а также даны задачи для самостоятельного решения. Включение некоторых расчетов по неэлектрохимическим процессам (например, химической металлизации) обусловлено протеканием таких процессов по электрохимическому механизму, а также тем, что этими процессами по традиции занимаются электрохимики. Сохранение принятого подразделения электрохимических производств на пять больших групп (столько и глав расчетов в сборнике) заставило включить примеры и задачи по новым электрохимическим процессам, не подходящим к этой классификации (например, электрохимическая регенерация растворов), в главы, более близкие по сущности процессов. [c.3]

    Рассмотренные примеры не исчерпывают всего многообразия электродных процессов. Тем не менее они позволяют составить достаточно ясное представление о природе стадий, из которых обычно слагается суммарный электродный процесс, что может быть использовано при классификации поляризационных явлений. Следует заметить, что хотя кинетика электродных процессов лежит в основе практически всех промышленных приложений электрохимии и является поэтому ее центральной и наиболее интенсивно разрабатываемой частью, в ней в отличие от теории растворов все еще нет установившейся и общепринятой терминологии. В связи с этим известный интерес представляет номенклатура, предложенная в 1950 г. Бонгофером, Геришером и Феттером и детализированная Феттером в 1961 г. Классификация, процессов и явлений, изучаемых кинетикой электродных процессов, принятая в настоящем учебнике, отвечает терминологическим традициям, сложившимся в отечественной электрохимической литературе. Вместе с тем она включает в себя и некоторые элементы номенклатуры Бонгофера и сотрудников. [c.296]

    Это классическое определение, берущее начало от В. А. Кистя-ковского и отвечающее принципам классификации наук, сформулированным Ф. Энгельсом, сохраняется как основа нового определения. Оно дополняется, однако, характеристикой признаков, присущих электрохимическим явлениям электрохимия изучает взаимное превращение химической и электрической форм энергии, системы, в которых это превращение соверш.ается (в равновесии и в динамике), а также все гетерогенные явления и процессы, равновесие и скорость которых определяются скачком потенциала между граничащими фазами и связаны с переносом зарядов через границы фаз в виде расчлененных актов окисления и восстановления. [c.9]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]

    Исключительное значение для обоснования электрохимического механизма коррозии имели работы выдающихся ученых Г.Дэви и М. Фарадея, установивших закон электролиза. Так, М. Фарадей предложил ва кнейшее для дальнейшего развития электрохимической теории коррозии соотношение между массой аноднорастворяющегося металла и количеством протекающего электричества, а также высказал (проверено Г. Дэви) предположение о пленочном механизме пассивности железа и электрохимической сущности процессов растворения металлов. В 1830 г. швейцарский физикохимик О. Де да Рив ч ко сформулировал представления об электрохимическом характере коррозии (он объяснил растворение цинка в кислоте действием микрогальванических элементов). Русский ученый H.H. Бекетов (1865 г.) исследовал явление вытеснения из раствора одних металлов другими, а Д.И. Менделеев (1869 г.) предложил периодический закон элементов, который имеет очень важное значение для оценки и классификации коррозионных свойств различных металлов. Важен вклад шведского физикохимика С. Аррениуса, сформулировавшего в 1887 г. теорию электролитической диссоциации и немецкого физикохимика В. Нернста, опубликовавшего в 1888 г. теорию электродных и диффузионных потенциалов. [c.4]

    Все электрохимические методы анализа основаны на процессах, происходящих на электродах или в межэлектродном пространстве. При этом возникает или изменяется ряд параметров системы, например потенциал, ток, количество электричества, полное сопротивление, емкость, электропроводность или диэлектрическая проницаемость, значения которых поропорцио-нальны концентрациям определяемых веществ или определяются их специфическими свойствами. Эти зависимости можно использовать для количественного и качественного определения веществ. Существует множество способов комбинации задаваемых и измеряемых величин путем изменения условий анализа, откуда следует большое число применяемых методов. Однако имеется много противоречий в классификации и номенклатуре этих методов. [c.96]

    С электрохимической точки зрения правильнее было бы делить химические элементы не на металлоиды и металлы, а на электрофилы (имеющие тенденцию присоединять электроны в процессе реакций) и электро-доты (имеющие в процессе реакций тенденцию терять электроны). Не говоря уже о большей четкости самих Рис. 111-38. Распределение ЭТИХ терминов, ОНИ ПОЗВОЛЯЮТ провести более правильную электронн о 4 плот ности а мо- существу классификацию. Действительно, помимо [c.92]

    Классификация Э. проводится по природе окислителей и восстановителей, к-рые участвуют в электродном процессе. Э. 1-го рода наз. металл (или неметалл), пофуженный в электролит, содержащий ионы этого же элемента. Металл Э. является восстановленной формой в-ва, а его окисленной формой - простые или комплексные ионы этого же металла (см. Электрохимическая кинетика). Напр., для системы Си Си" + 2е, We е - электрон, восстановленной формой является Си, а окисленной - ионы Си . Соответствующее такому электродному процессу Нернста уравнение для электродного потенциала Е имеет ввд  [c.424]

    Согласно кратко рассмотренным в разд. 1.42 принципам классификации топливных элементов, Юсти, Шайбе, Винзель и др. разработали газовые диффузионные электроды отдельно для водорода и кислорода. Эти электроды уже при температуре окружающей среды и умеренном избыточном давлении сочетают в себе такие оптимальные качества, как большая предельная плотность тока, незначительная поляризация, 100%-ный к. п. д. по току, почти абсолютная реализация идеального электрохимического процесса (с водой в качестве конечного продукта), максимальная аккумулирующая способность и способность к перегрузке, высокая устойчивость к отравлению и длительный срок службы причем псе это достигнуто при отказе от таких дорогостоящих конструкционных материалов, как редкие металлы. На усовершенствование технологии таких ДСК-электродов Немецкое трудовое объединение за 10 лет (с 1950 по 1960 г.) затратило больше труда, чем все существовавшие ранее группы вместе взятые. [c.86]

    Впервые важная роль химической стадии в электрохимической кинетике была установлена в ходе полярографических исследований. Основы теории полярографических волн с учетом диффузионных и химических ограничений были разработаны чешской школой полярографистов Брдичкой (1943), Визнером и другими, а также Делагеем с сотрудниками. Впоследствии представления о значительной роли химических превращений были перенесены и на другие области электрохимической кинетики. Так, Феттер и Геришер (1951) ввели понятие о реакционном перенапряжении, отвечающем тому случаю, когда скорость электродного процесса определяется условиями протекания химических реакций. По принятой в настоящем учебнике классификации этот вид перенапряжения определен как химическое или реакционное перенапряжение. [c.309]


Смотреть страницы где упоминается термин Классификация процессов электрохимическая: [c.295]    [c.179]    [c.403]    [c.78]    [c.98]    [c.4]    [c.476]    [c.9]   
Коррозионная стойкость материалов (1975) -- [ c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Процесс электрохимический



© 2025 chem21.info Реклама на сайте