Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Моделирование коррозии

    В испытаниях, проводимых с целью оценки водородного охрупчивания, вместо стальных образцов используют сферические роликовые подшипники, постоянно находящиеся под напряжением 280 МПа. На подшипники могут быть установлены резиновые или тефлоновые уплотнительные кольца для моделирования коррозии бурильных труб под слоем твердого осадка или под глинистой коркой. [c.121]


    Серьезным недостатком этого метода моделирования коррозии является отсутствие надежных методик переноса результатов, полученных на физических моделях, на реальную конструкцию. Поэтому методы физического моделирования коррозии рекомендуются лишь для решения частных задач. [c.173]

    Приведенные ранее уравнения описывают лишь процессы, протекающие в эффективном пористом материале, и непосредственно не могут быть применены при количественном изучении коррозии реального бетона, так как они дают только функциональные зависимости между безразмерными параметрами (что необходимо знать, например, при моделировании коррозии). [c.58]

    Рассмотрим коррозию арматуры в бетоне, протекающую в течение весьма длительного периода времени. Допустим, что бетонная конструкция представляет собой тело определенной толщины и концентрация агрессивной среды у арматуры сохраняется почти неизменной. В этом случае появляется еще один путь моделирования коррозии арматуры в плотном бетоне. При этом в бетон с водой затворения вводят соответствующие кальциевые соли. Концентрацию соли выбирают исходя из данных натурных обследований конструкций, эксплуатирующихся в цехах предприятий нефтехимии, причем нередко в лабораторных условиях для интенсификации процесса ее несколько увеличивают, так как механизм и основные особенности коррозии арматуры при этом удается сохранить [59]. [c.136]

    Хорошо очищенные металлические образцы (сталь СтЗ) после предварительного взвешивания опускали в коррозионные ячейки, наполненные исходным раствором композиции и продували гелием для удаления с их поверхности кислорода в течение 40 мин. Затем включали мешалку для моделирования фильтрационных потоков, через 6 ч испытуемые пластины доставали и взвешивали. После чего пластины, вновь очищенные, опускали в 6%-ный раствор композиции. Извлеченные из раствора стальные образцы снова взвешивали и рассчитывали скорость коррозии металла. Эксперименты показали, что скорость коррозии стали СтЗ в высокоминерализованной сточной воде составляет 0,127 г/(м ч), а в растворе композиции на основе НПАВ АФд-12 — 0,07 г/(м ч). Таким образом, композиция НПАВ АФд-12 снижает скорость коррозии металла почти в три раза, что обеспечивает защиту нефтепромыслового оборудования на 43%. [c.184]

    Метод измерения тока, возникающего между двумя электродами, применяют для моделирования коррозионных элементов при изучения контактных пар, щелевой коррозии, влияния аэрации и т. д. [c.143]


    Математическое моделирование атмосферной коррозии и ускоренные испытания [c.79]

    Измерение силы тока между двумя электродами в электролите применяется как метод для моделирования коррозионных элементов при изучении контактных пар, щелевой коррозии, влияния аэрации, определения эффективности электрохимической защиты, защитных свойств покрытий. [c.33]

    Математическое моделирование акустической эмиссии на основе теории марковских процессов [46] позволяет описать наблюдающиеся закономерности изменения интенсивности АЭ со временем, в частности их немонотонный характер. Пуассоновский поток АЭ-событий рассматривался как частный случай марковского процесса, порожденного рождением и гибелью структурных эле -ментов материала в объеме или на поверхности твердого тела (дислокации, двойника, пятна контакта поверхностей при их взаимном трении и других). При определенных значениях параметров рассмотренной модели расчетные зависимости изменения скорости счета со временем соответствуют наблюдаемым при пластическом деформировании материалов, в процессе приработки поверхностей трения, при некоторых видах коррозии. В частности объяснено появление максимума на зависимости N(t), наблюдавшегося во многих случаях после начала процесса или скачкообразного изменения его интенсивности. [c.184]

    При моделировании процессов коррозии следует руководствоваться принципами, перечисленными ниже. [c.142]

    При моделировании условий испытаний необходимо учитывать особенности состава реальной коррозионной среды. Например, при моделировании процессов атмосферной коррозии необходимо учитывать температуру, влажность и анионный состав реальной эксплуатационной среды. [c.142]

    Возможность моделирования ранних этапов коррозионного растрескивания н межкристаллитной коррозии на спла- [c.165]

    МОДЕЛИРОВАНИЕ ПРОЦЕССА КОРРОЗИИ [c.172]

    В книге описаны свойства, механизм действия, технология получения и особенности применения пленкообразующих ингибированных нефтяных составов (ПИНС) —нового класса защитных смазочных материалов, предохраняющих металлоизделия от коррозии и продлевающих срок их службы. Изложены принципы и элементы моделирования и оптимизации свойств защитных нефтяных составов. [c.2]

    С использованием математических методов планирования эксперимента разработаны многие отечественные ПИНС, например ВЗМ-МЛ, Мовиль, НГ-222 А, Б, НГ-224 [28, 37—46, 57]. Применение системы моделирования и оптимизации значительно сократило время на разработку и испытания этих эффективных средств защиты металлических изделий от коррозии. [c.46]

    В работе А. А. Герасименко и В. А. Ефимова проведено исследование значимости факторов атмосферной коррозии металлов методом парных сравнений при экспертных оценках (было исследовано 35 факторов). По мнению авторов, для получения грубой приближенной модели атмосферной коррозии достаточно варьировать три фактора 1) характер контакта с агрессивной средой 2) толщину и равномерность водной среды и pH раствора 3) характер загрязнения. Для получения более реальных моделей следует варьировать 7 или 11 факторов. Таким образом, моделирование в камерах или на климатических станциях даже простейшего случая атмосферной коррозии металлов и способов их защиты является весьма сложным (но необходимым). [c.102]

    Лабораторное моделирование контактной коррозии на движущихся объектах [c.60]

    При интенсивной коррозии и необходимости часто возобновлять раствор для моделирования ряда практических условий и с целью ускорить процесс коррозии устраивают непрерывный ток жидкости через сосуд для испытаний. Для этой цели можно рекомендовать прибор [77] (рис. 23), выгодно отличающийся от других аналогичных конструкций простотой и возможностью легко регулировать температуру, облегчающий наблюдение за образцами во время коррозии и исключающий применение резиновых пробок и соединений. [c.75]

    Контактная коррозия исследуется с двумя целями [4, 239] для изучения защитного действия протекторов или для оценки дополнительных коррозионных потерь, связанных с контактом разнородных Металлов. Этот вид коррозии связан главным образом с различием электрохимических характеристик контакти-руемых металлов или различных участков на одном и том же металле. Последние чаще всего обусловлены различием в обработке. На контактную коррозию существенное влияние оказывают размеры и физическое состояние электродов, свойства коррозионной среды, температура. В этой связи моделирование [c.143]

    Дистанционное определение коррозионного состояния в перспективе дает возможность проводить ускоренные испытания с постановкой управляемого эксперимента и моделирования отдельных стадий процесса коррозии. Создание и внедрение устройств для автоматических измерений параметров коррозионных процессов позволит не только решить задачи контроля коррозии, но и шире внедрить методы защиты от коррозии воздействием на среду, автоматическое регулирование параметров электрохимической защиты, дозирование летучих ингибиторов коррозии и биоцидов и т. п. [c.25]


    Особенности моделирования процессов коррозии, старения и биоповреждений [c.82]

    Для решения задач повышения долговечности машин, оборудования и сооружений большое значение имеет моделирование процессов коррозии, старения и биоповреждений. [c.82]

    В процессе разработки защитных продуктов с оптимальными функциональными свойствами в зависимости от назначения и области применения проводится всесторонняя оценка их физико-химических, поверхностных, защитных свойств с применением стандартных и научно-исследовательских методов. При этом из всех существующих методов отбирают те, которые в наиболее полной мере позволяют оценить качество разрабатываемого продукта, механизм его действия. Все используемые методы разделяют на труппы в соответствии с тем, какое функциональное свойство они позволяют оценить. Группы методов объединяют в систему моделирования и оптимизации функциональных свойств (СМОФС). При таком системном подходе к проведению испытаний единичные показатели качества исследуемых продуктов, получаемые с помощью лабораторных методов, подвергают математической обработке по специально разработанным алгоритмам. Это позволяет на основе свертки большого объема экспериментальной информации определить обобщенные показатели качества материалов, наиболее достоверно отражающие уровень их эффективности при применении. Комплексная система оценки качества позволяет расчетным путем определить ожидаемые сроки хранения изделий, защита от коррозии которых осуществлена тем или иным видом консервационного материала (см. табл. 8.2). [c.367]

    Совместно с БашНИПИнефть АНК Башнефть разрабатываются технологии ОПЗ в карбонатных коллекторах для объектов АНК Башнефть , АНК Татнефть и ОАО Самаранефтегаз . Совместно с НИИнефтеотдача осуществляется разработка технологии получения жидкой товарной формы термогелеобразующей композиции Галка с Уфимским НЦ РАН проводятся синтез и исследование новых азотсодержащих ингибиторов коррозии и гидрофобизаторов, с Институтом проблем нефтехимпереработки — битумных эмульсий для селективной изоляции водопритока и выравнивания профиля приемистости скважин совместно с кафедрой математики УГАТУ ведутся разработки программной продукции по математическому моделированию МУН. [c.62]

    Наряду с указанными примерами полного или преобладающего контроля скорости коррозии каким-либо одним фактором встречаются случаи смешанного контроля. Этим и определяется необходимость точной оценки степени контроля каждого фактора для харак теристики работы коррозионного эле мента. На практике такие определени могут быть проведены на модели кор розионного элемента с электродами ма кроскопических размеров. Электриче ская схема установки для этой работь приведена на рис. 140. Основная часть установки — коррозионный элемент, состоящий из двух электродов, помещенных в ячейку. Электроды изготовлены из различных металлов (если преследуется цель моделирования процессов структурной коррозии гетерофазного сплава) они могут состоять также из одного и того же материала, но тогда различаться должна либо подготовка поверхности электродов, либо состав среды. Оба электрода коррозионной пары последовательно замкнуты на переменное сопротивление R и токоизмеряющий прибор (микро- или миллиамперметр). В процессе работы коррозионном пары потенциалы электродов измеряют с помощью потенциометра или же регистрируют на автоматическом электронном самописце. [c.254]

    Последний метод приемлем для моделирования равномерно распределенных коррозионно-электрохимических процессов при теплопередаче. Однако для исследования питтинговой коррозии метод вращающегося диска хотя и дает полезные результаты, но обладает определенными недостатками, связанными с принудительным удалением продуктов коррозии из питтингов под действием центробежных сил, возникающих при вращении электрода. Из-за центробежного удаления от зарождающихся питтингов микрообъемов жидкости, насыщенных продуктами коррозии и имеющих вследствие этого большую плотность, поверхность диска становится неравновероятной в отношении возникновения питтингов. [c.170]

    О биостойкости материалов можно судить по действию на них ферментов тех микроорганизмов, которые идентифицированы в данных условиях эксплуатации. Коррозию металлов в этом случае называют микробиогенной (или ферментативной). Целесообразно проверять стабильность материалов относительно определенных классов ферментов (дегидрогеназы, оксидазы, гидролазы и др.). Эти испытания можно отнести к ускоренным или экспресс-методам. Так как ферменты действуют на материалы быстрее, чем микроорганизмы, возможно увеличение концентраций ферментов для интенсификации процесса возможно моделирование условий ферментативных реакций и выявления действительного характера процесса (при сравнении с протекающими в реальных условиях) возможна оценка ингибиторного действия биоцидных веществ [7, с. 68]. [c.76]

    Михайловский Ю. Н., Соколов Н. А. Моделирование атмосферной коррозии металлов в атмосферном испытательном стенде и камерах искусственного климата//Защита металлов. 1982. XVIII, № 5. С. 675—681. [c.101]

    ОПТИМИЗАЦИЯ в хим. технологии, поиск и реализация условий, обеспечивающих наибольшее или наименьшее значение количеств, оценки (критерия) кач-ва оптимизируемого объекта. Широко испольэ. в хим. технологии в связи с необходимостью проектирования новых высокоэффективных процессов и интенсификации уже действующих.. Задача О. сформулирована, если заданы критерий оптимизации (экономический — прибыль, приведенные затраты,себестоимость и т. п. технологический — выход продукта, содержание примесей в нем и др.) варьируемые параметры (т-ра, давление, величины входных потоков в хим.-технол. процессе), изменение к-рых позволяет менять эффективность процесса матем. модель процесса (см. Моделирование), ограничения, связанные с экономич. и конструктивными условиями, возможностями аппаратуры, требованиями взрывобезопас-ности и корроз. устойчивости. [c.411]

    Прогнозирование протекания коррозии особенно важно для стадии проектирования химико-технологических систем. На ооноваеии данных лабораторных и заводских исследований с учетом реального состояния конструкционных материалов аппаратов и коммуникаций химико-технологической системы прогнозирования предполагается разработка гипотез, способных определить методом моделирования ход развития коррозии и изменения при этом технического состояния аппаратов и коммуникаций. Для прогаозирования процесса коррозии используют методы физического и математического моделирования. Физическое моделирование коррозионного процесса сводится либо к моделированию процесса коррозии в естественных условиях, либо к моделированию коррозионного разрушения в искусственно созданных условиях. [c.172]

    Для исследования коррозии и ее влияния на техническое состояние аппаратурных элементов химико-технологической системы удобно использовать детерминированные по методу описания модели, т. е. модели, заданные логическими, алгебраическими или дифференциальными уравнениями, либо их решениями в виде функций времени и экспериментальными данными испытаний. Целью моделирования в этом случае служит либо итог коррозии (/, Ат, АР, Да и др.), либо изучение кинетики процесса. В тех1нике под скоростью коррозии часто понимают среднюю скорость коррозионного процесса Уср  [c.174]

    Стохастические модели прогнозируют (рис. 10.5) коррозию химико-технологической системы на основе совокупности статистических данных о процессе в условиях эксплуатации. Чем обширнее информация о характере влияния отдельных факторов и больше число аппаратов и коммуникаций химико-технологической системы учтено при анализе, тем точнее будут полученные результаты. Очевидна и сложность реализации схемы прогностического моделирования стохастических методов по сравнению с детерминированными методами. Трудности моделирования коррозионного прогноза стохастическим методом заключаются не только в получении обширной информации о влиянии внешних и внутренних параметров химико-технологической системы на скорость и итог коррозии, в анализе и обработке данных, но и в том, что практически невозможно проследить логическую причинную связь явлений, объективно существующую при коррозионном изменении состояния металла. Достоверность результатов прошоза стохастических объектов уменьшается из-за снижения точности прогноза с увеличением времени от предсказания до момента сравнения и корректировки коррозионного прогноза. В меньшей степени этот недостаток присущ регрессивным моделям, полученным с использованием методов планирования эксперимента. [c.185]

    Для разработки оптимальных свойств ПИНС и расчета ожидаемых сроков защиты изделий от коррозии авторами предложена система моделирования и оптимизации их функциональных свойств (СМОФС). В основу разработанной системы, как уже указывалось ранее (см. гл. 2), положены механизм защитного действия ПИНС, практические условия их применения, принцип оценки свойств в условных единицах — баллах по каждому показателю с последующей сверкой в обобщенную балльную оценку, отражающую суммарный уровень защитных свойств. В связи с особенностями пленкообразующих ингибированных нефтяных составов — существованием их в растворителе и в виде активного вещества, или сухого остатка (пленки), разнообразны их реологические и физико-химические свойства. [c.81]

    Оценку защитных свойств ПИНС проводят при их непосредственном испытании в коррозионных камерах различной конструкции. Были испытаны многочисленные прямые методы оценки защитных свойств с целью прогнозирования сроков защиты и установления скорости коррозии металлов. В работах П. В. Стрекалова, Ю. Н. Михайловского, Г. Б. Кларка и других исследователей изучена кинетика развития коррозионных процессов под пленками влаги, в присутствии диоксида серы и хлора в специальных автоматизированных установках и камерах, а также на атмосферных испытательных станциях стран — членов СЭВ [127]. Сделана попытка моделирования в камерах искусственного климата атмосферной коррозии металлов за счет ее ускорения с повышением температуры. [c.101]

    В практике часто можно наблюдать коррозию металлов вследствие работы макропар. В этом случае, в отличие от саморастворения металлов, объясняемого работой микропар, отдельные детали аппарата или конструкции являются макроанодами и разрушаются, в то время как другие являются либо инертными, либо работают в качестве макрокатодов. Такие пары возникают при контакте разнородных металлов в растворах электролитов, при неравномерной аэрации, при неравномерном распределении агрессивных реагентов по поверхности металли ческого изделия, при неравномерной деформации и т. д. Для изучения коррозионного поведения этих систем наиболее эффективным оказался метод моделирования [1]. В простейшем случае, когда имеется один катод и один анод, модель предельно проста и состоит из двух пластинок разнородных металлов, погруженных в коррозионную среду (рис. 117). Плоские прямоугольные образцы с изолированной ватерлинией погружают в прямоугольную ванну. В образцы вставлены кончики капилляров для измерения электродных потенциалов. Один электрод неподвижен, второй передвигается, за счет чего изменяется рас- [c.182]


Библиография для Моделирование коррозии: [c.165]    [c.196]    [c.309]    [c.269]   
Смотреть страницы где упоминается термин Моделирование коррозии: [c.80]    [c.81]    [c.411]    [c.246]    [c.39]    [c.24]    [c.12]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.82 , c.99 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия моделирование процесса

Лабораторное моделирование контактной коррозии на движущихся объектах

Моделирование процессов коррозии, старения и биоповреждений

Моделирование язвенной коррозии оборудования

Особенности моделирования процессов коррозии, старения и биоповреждений (А. А. Герасименко, Л. А. Михайлова)



© 2025 chem21.info Реклама на сайте