Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции альдегидов каталитические

    Каталитическое дегидрирование [80]. При окислении первичных спиртов в альдегиды каталитическое дегидрирование обладает преимуществом перед действием сильных окислителей, а именно предотвращается более глубокое окисление до КИСЛОТЫ. Чаще всего применяют хромит меди, но используют и другие катализаторы, например серебро и медь. По этой реакции синтезированы и многие кетоны. Каталитическое дегидрирование чаще используется в промышленности, чем в лаборатории. Однако сообщается и об удобной лабораторной методике с применением оксида меди [81]. [c.271]


    Другой способ основан на использовании в качестве исходного продукта ацетилена. Последний подвергают гидратации по реакции Кучерова (стр. 86), а образующийся уксусный альдегид каталитически восстанавливают водородом в присутствии никеля в этиловый спирт. Весь процесс может быть представлен схемой [c.117]

    Восстановление некоторых производных кислот в альдегиды. Здесь будет рассмотрена только реакция Розенмунда — каталитическое восстановление водородом хлорангидридов кислот (катализатор — палладий, осажденный на сернокислом барии)  [c.136]

    Третье направление — реакция совместной каталитической конденсации первичных ароматических аминов, ацетилена и ароматических альдегидов. [c.197]

    К решению этой задачи пробовали подойти путем сравнения групп катализаторов, специфичных для различных каталитических реакций (табл. 224). Из этой таблицы вытекают группы элементов периодической системы, активных как катализаторы в реакциях определенного типа (табл. 225). Группы специфичных катализаторов для различных реакций отдельных соединений представлены в табл. 226. Табл. 227 позволяет сравнить группы катализаторов, типичные для реакций насыщенных углеводородов (парафинов), ненасыщенных углеводородов (олефинов, ацетилена), ароматических и терпеновых углеводородов. Группы катализаторов, характерные для реакций альдегидов, кетонов, кислот, спиртов, нитросоединений, простых и сложных эфиров, приведены в табл. 228. [c.3]

    Предвосхищая последующее изложение методов органической химии, можио упомянуть несколько реакций взаимного превращения перечисленных типов соединений. Так, первичный спирт может быть окислен сначала в альдегид, а затем в кислоту (реакция 1). Альдегид восстанавливается при действии боргидрида натрия в спирт (реакция 2) кислота восстанавливается в спирт с помощью алюмогидрида лития в эфире (реакция 3). В результате окисления вторичного спирта образуется кетон (реакция 4) обратное превращение происходит при восстановлении боргидридом натрия или алюмогидридом лития, а также гидрированием кетона в присутствии платинового катализатора (реакция 5). Каталитическое гидрирование позволяет также перейти от алкенов к алканам (реакция 6)  [c.76]

    При переводе веществ, содержащих алифатические двойные связи, в более насыщенные системы выбор метода зависит прежде всего от того, имеются ли в молекуле наряду с двойными связями другие группы, способные к восстановлению. Невозможно представить методы восстановления общей схемой, которая подходила бы к отдельным возможным случаям. Так, например, гидроксильная группа очень устойчива ко многим восстанавливающим средствам, в том числе к большинству каталитических, но это относится только к ранее существовавшим гидроксильным группам если же гидроксильные группы получаются в процессе реакции альдегидов или кетонов, зачастую удается полное замещение карбонильного кислорода на водород. В этом разделе мы рассматриваем данные методы с точки зрения их способности насыщать в первую очередь двойные связи, будь то алифатические, али-циклические или ароматические, соответственно гетероциклические, и обсуждаем те из них, которые имеют общую применимость [см. примечание 1, стр. 597]. [c.11]


    Реакции гидратации. Каталитическое присоединение воды к олефинам, эпоксидам и соединениям с тройной связью широко применяется как метод препаративного и промышленного получения эфиров , третичных спиртов , гликолей , альдегидов и кетонов а также для извлечения непредельных третичных углеводородов из многокомпонентных смесей и очистки различных веществ от гидратирующихся соединений . [c.109]

    Основные методы получения душистых веществ класса альдегидов (реакции окисления, каталитического дегидрирования, конденсации и другие) рассматриваются для каждого альдегида отдельно. [c.145]

    Ацетали обычно получают взаимодействием альдегидов со спиртами под влиянием каталитических количеств минеральных кислот или по реакции альдегидов с ортоэфирами муравьиной или кремневой кислоты. [c.186]

    В настоящей работе нами были изучены реакции совместной каталитической конденсации ацетилена и ароматических аминов с анисовым альдегидом. [c.934]

    Изучались реакции совместной каталитической конденсации ацетилена и анисового альдегида с анилином, о-, м- и я-толуидинами, [c.936]

    Каталитическое окисление в жидкой фазе имеет то преимущество перед газофазным процессом, что позволяет более точно регулировать состав конечных продуктов [60]. Та1 , при окислепии н-бутана в жидкой фазе образуется в первую очередь уксусная кислота при полном отсутствии формальдегида. При окислепии же пропана в газовой фазе, напротив, образуются главным образом пропионовый альдегид, пропиловый спирт, ацетон, уксусный альдегид, уксусная кислота, формальдегид, метиловый спирт, окись пропилена, окись этилена. При окислении н-гексана теоретически можно получить около 60 различных продуктов окисления, не считая вторичных продуктов, образующихся за счет дальнейших реакций кислородсодержащих компонентов. Метан и этан не только содержатся в значительно больших количествах в природном газе, чем пропан или бутан, но они представляют интерес и для применения в качестве исходного сырья, так как нри окислении дают продукты более простого состава. Именно сложный состав продуктов газофазного окисления был причиной того, что внедрение этого процесса в промышленную практику сильно задержалось. [c.151]

    Осваивается получение уксусного альдегида каталитическим окислением этилена по реакции 2С2Н4 О2 —>- 2СН3СНО. Каким должен быть объемный расход этилена для обеспечения работы проектируемой установки, если ее производительность 170 т/сут продукта и выход его составляет 90 % от расхода этилена Каким будет давление газа в газгольдере вместимостью 2000 м , в котором при 20 °С будет содержаться 2-часовой аварийный запас этилена  [c.22]

    Синтез 2-арил-, 4-метпл-2-арил-, 2,4-диарнлпроизвод-ных 5,6-бензохинолина осуществлялся нами в нескольких различных вариантах, но практически в одну стадию. В основу этих синтезов налш положены теоретические представления, изложенные ранее, во-первых, на основе реакции совместной каталитической конденсации 2-нафтиламина и ароматических альдегидов с ацетиленом в присутствии солей ртути и меди. Для этой цели реакционная масса из 2-нафтиламина и ароматического альдегида в молекулярных отношениях 2 1. насыщалась ацетиленом. Продукт реакции подвергался перегонке или нагревался с концентрированной соляной кислотой 121—124]. В дальнейшем из 2-нафтиламина и ароматического альдегида предварительно получалось шиффово основание. Последнее растворялось в спирте, к нему добавлялся анилин и катализатор, реакционная масса насыщалась ацетиленом. В этом синтезе роль переносчика ацетилена отводилась анилину. [c.45]

    По сравнению с реакциями образования ординарной углерод-углеродной связи число методов построения кратных углерод-углероднь1х связей с участием переходных металлов невелико. В последние годы получили известность две реакции образования алкеиов с использованием переходных металлов, однако область их применения и потенциальные возможности еще не полностью выяснены. Этими реакциями являются каталитический метатезис алкенов и восстановительное сочетание альдегидов и кетонов до алкенов. В некоторых случаях для получения алкена желательно использовать дезоксигенирование соответствующего эпоксида в этом разделе будет кратко рассмотрен ряд эффективных реакций с использованием переходных металлов для осуществления такого превращения. [c.63]

    Каталитическое окисление углеводородов — сложный химический процесс, в результате которого образуются несколько продуктов реакции (альдегиды, органические кислоты, окись углерода, углекислый газ). В науке прочно утвердилось мнение, что образующиеся во время оки слепня углеводородов кислородсодержащие соединения являются промежуточными продуктами реакций образования окиси углерода и углекислого газа [1]. Стадийные схемы окисления углеводородов на различных катализаторах строились на взаимодействии молекул углеводорода с атомарным кислородом, появляющимся на поверхности катализатора прн адсорбции [2]. В последнее время в литературе начали появляться работы, в которых приводятся стад1п 1ные схемы окисления углеводородов, где в качестве промежуточных активных продуктов фигурируют радикалы [3]. Все эти схемы имеют существенные недостатки, так как в них механически перенесены радикальные механизмы гохмогенного окисления без учета влияния, которое оказывает твердое тело на протекание таких реакций. Ряд активных промежуточных форм, ведущих процессы в объеме, не может существовать на поверхности твердого тела. [c.410]


    Стадию гидролиза в некоторых случаях заменяют восстановительным расщеплением под действием Zn в СН3СООН или каталитическим гидрированием над Pd/СаСОз. Озонирование в метаноле с последующим восстановлением диме-тилсульфидом позволяет гладко расщеплять олефины, сохраняя имеющиеся функциональные группы (NO2, СООН и т. п.). По структуре образующихся в ходе реакции альдегидов или кетонов можно судить о положении С = С-связи в исходной молекуле. [c.438]

    Особую группу реакций, близко примыкающих к процессам альдольной конденсации, составляют некоторые окислительновосстановительные превращения альдегидов. Каталитическое действие сильных щелочей обычно приводит к альдольной конденсации, но если последняя невозможна из-за особенностей строения альдегида, то протекает реакция Канниццаро, при которой одна молекула альдегида окисляется в карбоновую кислоту, а другая восстанавливается в спирт. Это в еще большей степени относится к катализу слабыми основаниями (алкоголяты кальция, магния и особенно алюминия), меньше катализирующими альдольную конденсацию, но зато вызывающими окислительно-восстановительные процессы. При этом в безводной среде образуется сложный эфир (реакция Тищенко), а в водной— спирт и соль кислоты  [c.559]

    Полимеризация альдегидов. К альдегидам по месту их карбонильной группы присоединяется не только ряд веществ, но и сами молекулы альдегидов способны соединяться друг с другом (с разрывом двойной связи их карбонильной группы). К таким реакциям относятся реакции полимеризации и альдольной конденсации. При реакции полимеризации остатки молекул в полимере часто связываются через атом кислорода, азота или другого элемента (не углерода). Полимеризация альдегидов каталитически ускоряется минеральными кислотами (Н2504, НгЗОз, НС1). В результате этой реакции в ряде случаев образуются сравнительно небольшие молекулы циклического полимера  [c.191]

    Полимеризация альдегидов каталитически ускоряется минеральными кислоталш (H0SO4, H2SO3, НС1). В результате этой реакции в ряде случаев образуются сравнительно небольшие молекулы циклического полимера  [c.127]

    В настоящее время все исследователи, работающие в области каталитического синтеза с окисью углерода, считают наиболее вероятной схему механизма реакции карбонилирования, предложенную Хеком и Бреслоу для гидроформилирования олефинов в присутствии карбонилов кобальта и никеля [2, 4—6]. По этой схеме сначала из карбонила металла образуется гидрокарбонил, который далее выполняет функцию основного катализатора гидроформилирования. При взаимодействии гидрокарбонила и олефина возникает алкилметаллкарбонил, который затем изомеризуется в ацильное производное. Последнее соединение реагирует с водородом, давая продукт реакции — альдегид и регенерируя гидрокарбонил  [c.131]

    С ПОМОЩЬЮ реакции, рассматриваемой далее. Из предыдущего следует, что некоторая доля альдегида каталитически окисляется в перкислоту, последняя же либо разлагается с вы 1еле-нием С0 , либо, как можно предположить, диссоциирует иногда на два одновалентных радикала часть этих радикалов выходит в газовую фазу. [c.87]

    Эта реакция (являющаяся, как видно из изложенного выше, общей реакцией карбонильных соединений, а не специфической реакцией альдегидов) широко применяется в синтезах. Ее используют во всех тех случаях, когда молекула подвергающегося восстановлению кетона содержит группы, чувствительные к действию обычных восстановителей илп каталитически активированпого молекулярного водорода. Так, методом Меервейна—Пондорфа—Верлея можно восстановить кротоновый альдегид СНзСН=СНСНО до кротилового спирта СН,СН =СНСНаОН и питрокетоны до соответствующих нитроспиртов. [c.666]

    Оксйреакция представляет собой каталитическое присоединение окиси углерода и водорода к олефину с образованием альдегидов, содер кащих па один углеродный атом больше, чем исходный олефин, т. е. в молекулу соединения вводят оксогруппу >С0. Во второй стадии реакции альдегиды обычно восстанавливаются водородом до первичных спиртов. Такой двухступенчатый процесс и известен под названием оксосинтез . Наибо.лее эффективным катализатором для этой реакции является активная форма кобальта, например восстановленная окись, карбонат или ацетат. [c.380]

    Гидрирование альдегидов в первичные спирты в известной мере может протекать в сочетании с реакцией Ройлена. Оно идет как гомогенная каталитическая реакция само но себе и основано на том, что карбонилгидрид кобальта при определенной температуре и определенном соотношении окиси углерода и водорода может функционировать как восстанавливающий агент [43]. [c.214]

    Таким образом, в настоящее время, получение первичных спиртов, исходя из альдегидов, возможно посредством их гидрирования тремя способами. Во-первых, гидрированием альдегидов в газовой фазе в присутствии избытка водорода и, например, никелевого катализатора без давления или под небольшим давлением гетерогенно-каталитической реакцией. Во-вторых, в дополнение к реакции Ройлена можно по окончании образования [c.214]

    С целью повышения выхода -масляного альдегида фирмой Рур — Хемн (ФРГ) разработан процесс каталитического крекинга изомасляпого альдегида с образованием компонентов исходного сырья (смеси пропилена, оксида углерода и водорода), пригодного для использования в реакции гидроформилиро-вання. [c.163]

    Чемберлен и Уолш [89] предположили, что каталитическими агентами, ответственными за холодные пламена, являются гидроксиалкилперекиси, возникающие нри конденсации на поверхности перекисей и альдегидов. Франк-Каменецкий описал периодичность холодных пламен. Лотка [941 описал систему кинетических уравнений для периодических химических процессов. Эти уравнения подтверждают предположение Франк-Каменецкого. Для этого необходимо, чтобы перекиси и альдегиды играли роль катализаторов при образовании друг друга и исчезновении по системе реакций второго порядка, таких, как [c.417]

    Исследования в области каталитического гидрирования окиси углерода в течение первой половины XX в. развивались все более и более быстрыми темпами. Первыми вехами на пути этих исследований двились работы Сабатье и Сандерана [24] по синтезу метана на никелевых катализаторах и открытие Баденской анилиновой и содовой фабрикой [4] реакции между водородом и окисью углерода. В результате этой реакции образовывался жидкий продукт, содержавший спирты, альдегиды, кстоны, жирные кислоты и некоторое количество насыш енных и ненасыщенных алифатических углеводородов. Она протекала при давлениях 100—200 ат и температурах 300—400° в присутствии окисей кобальта и осмия, активированных щелочью и нанесенных на асбест . Последующие исследования привели к разработке в 1923—1925 гг. промышленного синтеза метанола. Начиная с 1923 г. и до настоящего времени, проводятся обширные работы по изучению процесса Фишера-Тропша в лабораторном и полузаводском масштабах. [c.519]

    Хотя природа поверхности оказывает несомненное влияние на продолжительность периода Tj и, вероятно, периода г. , она не имеет, согласно данным Дэя и Пиза [9], большого влияния на границы давление—температура областей холоднопламенного и высокотемпературного воспламенений. Эти исследователи, изучая систему пронан—кислород, получили картину, подобную изображенной на рис. 2 в пирексовых сосудах, обработанных азотной или фтористоводородной кислотами или покрытых КС1. В последнем случае наблюдалось значительное удлинение индукционного периода, особенно при низких температурах. Анализ продуктов, полученных в серии опытов с применением аналогичной обработки, показал наличие перекисей во всех сосудах, кроме покрытых КС1. На основании этих фактов Дэй и Пиз высказали сомнение относительно роли перекисей в механизме образования холодного пламени, и одновременно, подняли вопрос о влиянии ацетальдегида в связи с тем, что, согласно более раннему исследованию Пиза [34], покрытие стенок сосуда слоем K I обусловливает значительно более низкую концентрацию ацетальдегида, чем в сосудах без такого покрытия. По нашему мнению, так как реакция не обнаруживает тенденции к достижению стационарного состояния, обрыв цепей на поверхности сосуда мон ет лишь замедлить скорость реакции, но не способен полностью предотвратить достижение критических концентраций альдегидов и перекисей, вызывающих образование холодйого пламени. Эти критические концентрации зависят главным образом от давления и температуры и достигаются спустя более или менее длительное время в зависимости от природы поверхности. То обстоятельство, что в непрерывной системе не обнаружены перекиси в покрытой КС1 трубке, не свидетельствует против их кратковременного существования аналогичным образом при гетерогенном каталитическом окислении ацетальдегида на покрытой КС1 поверхности не требуется достин ения критической концентрации для течения самоускоряющейся реакции. [c.259]


Смотреть страницы где упоминается термин Реакции альдегидов каталитические: [c.575]    [c.128]    [c.61]    [c.83]    [c.158]    [c.4]    [c.16]    [c.666]    [c.4]    [c.16]    [c.148]    [c.215]    [c.221]    [c.273]   
История химии (1975) -- [ c.374 ]

История химии (1966) -- [ c.360 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитические реакции Реакции

Каталитические реакции Реакции каталитические

Реакции каталитические



© 2024 chem21.info Реклама на сайте