Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изотопы электролитическое

    В то время как относительное различие в массе изотопов для всех элементов, кроме самых легких, невелико, основные изотопы водорода различаются по массе в два раза. Это обусловливает относительно большее различие их свойств и облегчает их разделение. Влияние различия изотопов более сильно проявляется в физических свойствах, но обусловливает также и некоторое различие химических свойств. Так, при электролизе несколько легче подвергаются разложению молекулы воды, содержащие легкий изотоп, а молекулы, содержащие тяжелый изотоп, постепенно накапливаются в электролитической ванне. Это дает возможность, проводя процесс, многократно полностью разделить изотопы во-п.орода. [c.48]


    Ю. В. Баймаков с сотрудниками изучали процесс поведения иридия при электролитическом рафинировании меди и никеля, используя для этого радиоактивный изотоп 1г 2. Было установлено, что иридий обнаруживается в растворе как в форме ионов, так и в форме высоко диспергированных частиц. В катодном никеле иридия оказывалось значительно меньше, если анод заключали в полупроницаемые пленки, пропускавшие ионы, но препятствовавшие проникновению сквозь них коллоидных частиц (коллодиевые пленки). При очистке никелевых растворов от примесей было обнаружено, что цементная медь содержит небольшие количества платины и палладия и практически в ней [c.306]

    Воздействуя затем чистым раствором с избытком ионов Н+, получаем обратную реакцию перехода ионов 8ЬЗ+ в раствор и загрязнение по следнего. В практике получения чистых металлов было обнаружено с помощью изотопа 8Ь з, что стекло посуды сорбировало сурьму, которая при электролизе переходила в электролитическую медь. [c.578]

    Определение чисел переноса ионов. Обычные методы определения чисел переноса ионов сводятся к проведению электролиза и последующему химико-аналитическому определению изменения содержания соответствующего иона в приэлектродных пространствах. Обычно чувствительность химико-аналитических методик такова, что определение изменения концентрации требует пропускания значительных количеств электричества, а следовательно, весьма продолжительно. За это время начинает играть существенную роль диффузия продуктов электролиза, искажающая картину изменения концентраций, происходящего за счет электролиза. Это приводит к тому, что химико-аналитические варианты в общем случае продолжительны и мало точны. От этих недостатков в значительной степени свободны радиометрические методы определения чисел переноса. Один из наиболее чувствительных методов предусматривает проведение электролиза в трехсекционной электролитической ячейке. Радиоактивный изотоп вводится в среднее отделение в той химической форме, число переноса которой необходимо определить. Одинаковый химический состав всех трех отделений обусловливает отсутствие процессов концентрационной диффузии. [c.190]

    Для определения 10 —10 г серебра методом изотопного разбавления его выделяют электролизом из раствора, содержащего Ад. Электролиз ведут в двух идентичных электролитических ячейках, включенных в цепь последовательно. В одной из них находится стандартный раствор изотопа А , а в другой — изотоп и раствор исследуемого образца. Затем измеряют радиоактивность катодного осадка и ячейки, содержащей пробу, активность которой меньше в результате разбавления нерадиоактивным изотопом. Наиболее хороший выход по току получается на фоне 0,5—1,0 М ККОз + 0,02 — 0,06 М НКОз при pH 1—4. Определению не мешает Си(П), С(1 и N1 [1408, 1409]. [c.133]


    Такие стандарты, вообще говоря, могут быть приготовлены путем химического или электролитического осаждения или механическим путем с использованием тщательно прокалиброванных по активности полученных слоев илй осадков, а также путем включения изотопов в органические вещества (синтез), приготавливаемые в виде тонких пленок и т. д. [c.231]

    Содержание " Ри в пробах можно понизить до 10" -10 г, если применить электролитическое нанесение плутония [94], а регистрацию ионов осуществлять с помощью анализатора импульсов, каждая группа каналов которого соответствует определенной массе изотопа. [c.295]

    Электролитический способ был положен и в основу синтеза сульфата двухвалентного европия. Свойства соединений р.з.э. в двух- и четырехвалентном состоянии вследствие больших экспериментальных трудностей почти не изучены. Сульфат же Ей (II) применяется в практике и для отделения европия от остальных лантаноидов, и для получения его радиоактивных изотопов, поэтому изучение свойств этого соединения представляет значительный интерес. [c.289]

    Один из вариантов радиометрического метода определения чисел переноса заключается в следующем [388]. Электролитическая ячейка, разделенная пористыми перегородками на три отдельные камеры, заполняется исследуемым раствором одинакового состава при этом радиоактивный изотоп вводится в среднюю камеру. Перемещение изотопа через перегородку обусловливается не только электрохимическими процессами, но и диффузией (последнее учитывается при расчетах путем проведения контрольных опытов без пропускания тока). [c.214]

    В качестве примера использования изотопов для изучения этого процесса [389] рассмотрим электролитическое соосаждение [c.215]

    Существенным для выбора между обеими этими группами механизмов могло бы стать исследование Розенталь и Веселовского с применением изотопа Розенталь и Веселовский электролитически покрыли платинированную платину слоем хемосорбированного кислорода, обогащенного О. Масс-спектрометрический анализ первых порций кислорода, выделявшегося при анодной поляризации в необогащенном растворе электролита, показал, что кислород обогащен О. Этот результат указывал бы на взаимодействие окислов металла по уравнению (4. 218), если бы было твердо установлено, что между окислом металла и свежим электролитом, не обогащенным кислородом, обмен О не происходит. На это указали сами авторы. Если бы подобный обмен имел место, то электролит непосредственно у поверхности электрода обогатился бы Ю. Газообразный кислород, который мог бы образоваться непосредственно, без участия кислородных соединений на металле, например по уравнению (4. 217), также оказался бы обогащенным. Таким образом, еще и теперь на основе имеющихся экспериментальных данных нельзя с уверенностью сделать выбор между обеими возможностями. [c.674]

    Для исследования применяли электроды, полученные электроосаждением изучаемых металлов на платиновую фольгу или сетку. Методы приготовления электродов и их характеристики подробно описаны в работах [40—44]. Для получения электролитически смешанных осадков платины и палладия с рутением в работе [42] была разработана методика с применением радиоактивного изотопа рутения Ри . Скелетные катализаторы — родиевый, платино-рутениевый, осмиевый — приготавливали из смеси порошков исследуемых металлов с алюминием путем сплавления и последующего разложения в растворе щелочи [44]. Скелетные катализаторы и черни вводили в ячейку завернутыми в частую платиновую сетку. [c.198]

    Испарение и унос влаги с газами из электролизера приобретают важное значение при использовании процесса электролиза для производства тяжелой воды. Предложено использовать естественные процессы испарения и уноса воды с газами из электролитических ячеек для отбора из ячеек конденсата, обогащенного тяжелым изотопом водорода, с целью создания непрерывной каскадной схемы разделения изотопов водорода без дополнительных затрат энергии на испарение воды из электролита. Более подробно этот вопрос будет освещен в VI главе. [c.81]

    Коэффициент электролитического разделения изотопов водорода зависит от материала и состояния поверхности катода, его потенциала, состава электролита, наличия в нем добавок, плотности тока, температуры, длительности процесса электролиза и некоторых других факторов. Многочисленные исследования зависимости величины а от условий процесса электролиза дают плохо воспроизводимые и зачастую противоречивые результаты, что можно объяснить недостаточным учетом влияния всех факторов, определяющих величину коэффициента разделения. Из них наиболее важными в практическом отношении являются влияние на коэффициент а материала катода, температуры процесса и различных добавок к электролиту. [c.239]

    Некоторый эффект разделения изотопов может наблюдаться при электролизе. Этот метод был использован для приготовления окиси дейтерия из воды и удобен при наличии дешевых-источников электроэнергии [20491. Электролиз был первым методом для разделения изотопов в широких масштабах, но его применение в основном ограничивается отделением дейтерия от водорода. Если обозначить отношение дейтерия к водороду в газе, выделяющемся при электролизе воды через Ru соответствующее отношение в воде через Rz, то коэффициент разделения а, равный Ri Ri, имеет величину 6, что определяет простоту увеличения концентрации дейтерия при электролизе больших количеств воды. Для других изотопов значение а достигает лишь 1,01, что делает метод малоэффективным. При электролитическом разделении изотопов преимущества системы противотока очевидны, поскольку они позволяют избежать потерь воды при получении высоких концентратов дейтерия. Газы, выделяющиеся на ступени N, соединяются с образовавшейся водой и добавляются к ступени N — 1). Пары воды, проходящие через эти газы, конденсируются и добавляются к ступени N -f 1). [c.461]


    Для некоторых элементов возможно успещное разделение их изотопов электролитическим методом. Интересен случай отделения дейтерия — изотопа, который по своей массе и другим свойствам весьма сильно отличается от обычного водорода. Скорость катодного выделения водорода при электролизе легкой воды (Н2О) значительно превышает скорость выделения дейтрия при электролизе тяжелой воды (DgO). Поэтому при электролизе обычной воды выделяющийся на катоде водород всегда значительно беднее дейтерием и богаче обыкновенным водородом, чем электролит в тот же момент электролиза. В результате этого в ходе электролиза жидкий электролит как бы очищается от легкого изотопа водорода и, если исходить из большой первоначальной (например, 20 кг воды) массы, то в малом остатке (0,1 г) можно получить чистую тяжелую воду. Фракции недостаточно чистого тяжелого водорода, полученные при электролизе, окисляют в воду и подвергают вторичному (и так далее) электролизу. [c.29]

    Известны следующие способы активирования деталей облучение в ядерном реакторе, отливка деталей (например, поршневых колец) с введением в жидкий металл радиоактивного изотопа, электролитическое заполнение канавок на црверхности трения металлом с радиоактивным изотопом, применение радиоактивных вставок — свидетелей . Рассмотрим особенности этих способов применительно к активированию поршневых колец [85]. [c.94]

    Однако необходимо указать, что найденный таким образом ток обмена не равен току обмена системы НзО 1Н2, Р1, так как между реакционной способностью различных изотопов водорода имеется некоторое различие. Ток обмена между газообразным дейтерием и ионами дейтерия несколько меньше тока обмена между газообразным водородом и ионами водорода. На различиях в токах обмена (и, по-видимому, в перенапряжениях) основано электролитическое разделёние водорода и дейтерия. При электролизе смеси из обычной и тяжелой воды водород выделяется легче дейтерия, причем последний в виде тяжелой воды концентрируется в растворе. [c.608]

    ТАНТАЛ (Tantalum назван по имени героя древнегреческой мифологии Тантала) Та — химический элемент V группы 6-го периода периодической системы элементов Д. И, Менделеева, п. н. 73, ат. м. 180,9479. Т. открыт в 1802 г. Экебергом. Природный Т. состоит из двух стабильных изотопов, известны 13 радиоактивных изотопов. Т.— металл серого цвета со слегка синеватым оттенком, т. пл. 2850° С, твердый, очень устойчив к действию кислот и других агрессивных сред, превосходит в этом даже платину. Получают Т. из тантало-ниобиевых руд. Т. в соединениях проявляет степень окисления +5. Используется для изготовления химической посуды, фильер в производстве искусственного во-токна, в хирургии для скрепления костей при переломах, для изготовления жаростойких, твердых и тугоплавких сплавов для ракетной техники и сверхзвуковой авиации, для изготовления электролитических конденсаторов, выпрямителей и криотронов, нагревателей высокотемпературных печей, арматуры электродных ламп, в ювелирном деле и др. [c.244]

    Открыты три изотопа водорода — протий, обозггачается символом Н,, Н — дейтерий — символом D, IH — тритий — символом Т. Протий и дейтерий встречаются в природе, тритий синтезирован. В природном водороде содержание дейтерия достигает 0,02%. Дейтерий впервые был получен при электролизе природной воды в виде тяжелой воды D2O. В процессе электролитического разложения большого количества природной воды D2O концентрируется в остатке, так как при электролизе воды разряжение ионов происходит значительно быстрее, чем ионов D+. [c.246]

    Развитием идей школы В. А. Плотникова являются исследования механизмов электролитической диссоциации и переноса тока в неводных растворах. Разработанные радиометрические методики, основанные на применении радиоактивных изотопов, позволили решить ряд прин-ципиальных вопросов в изучении природы неводных электролитных Г растворов [c.176]

    Протон (от греч. protos — первый) — устойчивая элементарная"] (фундаментальная) частица с единичным положительным электрическим зарядом П. в 1863 раза тяжелее электрона протоны образуют вместе с нейтронами ядра всех химических элементов. Число П. в атомном ядре определяет заряд ядра (2) и место соответствующего элемента в периодич. системе Д. И. Менделеева. Наиболее легкое ядро — ядро изотопа водорода (протия), представляет собой один протон. Поскольку атом водорода имеет только один электрон, его ионизация приводит к образованию положительного иона Н+, который в растворах гидратирован (НзО+). Этот ион играет важную роль в кислотно-основных равновесиях (кислота протон + + основание), в ионном обмене, в электролитической диссоциации и др. Протонизация — присоединение протона Н+. [c.109]

    Сравнительно широкое применение нашел метод электролитического выделения металлов (естествепных и искусственных изотопов) на подложки, в том числе плутония, америция, кюрия, урана, нептуния, полония, Со ", Ге , Ре , Ag , Ag , [c.170]

    Свойства (см, также табл. 35). Кадмий — белый мягкий металл. По сравнению с цинком имеет более низкую температуру плавления, более устойчив на воздухе и обладает способностью к пайке. Получают как побочный продукт цинкового производства осаждением из сульфатного раствора при действии цинковой пыли очистку проводят методом электролитического рафинирования (электролит ISO4). Применяют для изготовления а1ЮД0В, используемых при гальваническом кадмировании, при создании никель-кад-миевых аккумуляторов, для производства низкоплавких сплавов. Изотоп кадмия " d хорошо поглощает нейтроны и поэтому используется для изготовления регулирующих стержней ядерных реакторов. [c.402]

    Анбар и Таубе [320] изучали разделение изотопов кислорода на окисных электродах (РЬ02, МПО2 и Ag0). В этом случае кислород из анодного окисла выделяется электролитически как 0 , но при использовании окисла в качестве электрода происходит быстрый обмен между анодным окислом и водой. Следовательно, разделение изотопов кислорода определяется равновесным процессом [c.513]

    Другим примером использования физико-химических методов для выделения радиоактивных изотопов является получение высокоактивных препаратов КаВ из длительно хранившихся препаратов радия. При перекристаллизации бромидов радия и свинца (НаО) последний количественно остается в маточном растворе, так как не образует смешанных кристаллов с бромидом радия [63], Для выделения КаО соль бромида радия растворяется в минимальном количестве воды, затем прибавляется избыток концентрированной бромистоводородной кислоты (при этом бромид радия осаждается почти количественно). После охлаждения и повторной кристаллизации КаВгй маточные растворы объединяются и упариваются. Полученный раствор, содержащий более 90% КаВ (от первоначального содержания его в препарате радия), выпаривается несколько раз с азотной кислотой, после чего НаО осаждается электролитически на аноде в виде двуокиси. [c.43]

    ЭТОГО различия на их химические свойства очень слабое и поэтому почти незаметно. У водорода же основные его изотопы раз- личаются по массе в два раза, и влияние этого различия обнаруживается и на некоторых химических свойствах. Так, напри-- мер, при электролизе воды более легко подвергаются разложению молекз лы воды, содержащие легкий изотоп водорода (с массой 1), а молекулы воды, содержащие тяжелый изотоп (с мас-i oй 2), постепенно накапливаются в электролитической ванне. [c.410]

    Важным моментом, обеспечивающим правильность результатов опыта, является метод приготовления препаратов для измерения. Выбор метода зависит от типа и энергии излучения изотопа, химической природы радиоактивного вещества, требуемой степени точности эксперимента и т. д. Г азообразные вещества (водород, меченный тритием углекислый газ, содержащий СОг, и др.) приходится непосредственно вводить внутрь счетной трубки или ионизационной камеры. Измерение радиоактивности в жидкой фазе имеет известные преимущества, но предполагает достаточно высокую удельную активность измеряемого раствора и применение специальной аппаратуры (тонкостенные счетчики погружения и т. п.). Кроме того, мягкое Р-излучение очень сильно поглощается жидкостью в таких случаях предпочитают выпаривать раствор и измерять активность сухого остатка. Приготовление для измерений препаратов в твердом состоянии является наиболее распространеннылМ методом. Такие препараты готовят испарением, осаждением радиоактивного вещества из раствора, либо электролизом. Каждый из этих методов имеет свои преимущества и недостатки. При простом выпаривании активного раствора в чашке (или на другой подложке) радиоактивное вещество отлагается неравномерно, преимущественно ближе к краям подложки. Электролитическое осаждение может дать [c.177]

    Радиоактивные индикаторы с успехом используются для изучения фазового состава сплавов, характера и условий образования и распределения неметаллических включений. Например, при помощи радиоактивного изотопа хрома-51 проведено исследование содержания хрома в отливках хромистой стали. Радиоактивный индикатор вводился в расплавленную сталь. Из пробы металла электролитическим способом выделялась карбидная фаза. По изменению содержания хрома со временем при различных температурах удалось получить ценные сведения о кинетике кар-бидообразования при отпуске закаленной хромистой стали. Установлено также, что скорость перехода хрома в карбид заметно отличается от скорости перехода его в цементит. [c.206]

    Современное состояние проблемы применения электролиза для производства тяжёлой воды и изотопов водорода. Впервые промышленное производство тяжёлой воды по электролизному методу было организовано в Рьюкане (Норвегия). Первоначальная установка состояла из девяти последовательно соединённых ступеней электролитического концентрирования, получаемый продукт содержал 15 ат.% дейтерия, относительный отбор на ступенях составлял 0,27 обогащённый водород не сжигали и не возвращали в цикл. Для увеличения объёма производства впоследствии была использована рекуперация газов, затем её заменили процессом изотопного обмена между парами воды и водородом. До 1943 г. установка в Рьюкане была крупнейшим производителем тяжёлой воды в мире. Окончательное концентрирование примерно от 15 до 99% ат. О проводилось по 9-ступенчатой электролитической схеме с рекуперацией газов. [c.287]

    Разделение изотопов водорода электролитическим методом было открыто еще в 1932 г. Вашберном и Юрейем [22]. Сущность этого метода заключается в том, что при электролизе обыкновенной воды в неразложившемся остатке содержится повышенное (в 3— 10 [c.10]

    Изотопный обмен свинцом между хлоридом и нитратом этого элемента. В раствор нитрата свинца, меченного радиоактивным изотопом (РЫ ), вносим неактивный хлорид свинца и нагреваем смесь до полного растворения осадка РЬСЬ. После охлаждения раствора получаем кристаллы хлорида свинца, которые оказываются радиоактивными. Появление радиоактивного изотопа в первоначально неактивном РЬСЬ является результатом перераспределения ионов вследствие электролитической диссоциации соединений свинца в водных [c.167]


Смотреть страницы где упоминается термин Изотопы электролитическое: [c.414]    [c.151]    [c.216]    [c.245]    [c.126]    [c.135]    [c.462]    [c.513]    [c.364]    [c.345]    [c.596]    [c.677]    [c.557]    [c.6]    [c.178]    [c.16]   
Радиохимия (1972) -- [ c.228 , c.229 ]




ПОИСК







© 2025 chem21.info Реклама на сайте